Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > General characteristics > Poles and essential singularities > With respect to a





http://functions.wolfram.com/07.15.04.0009.01









  


  










Input Form





Residue[JacobiP[\[Nu], a, b, z], {a, -\[Nu] - k}] == (((-1)^(k - 1) Gamma[-b + k])/((k - 1)! Gamma[-b - \[Nu]] Gamma[1 + \[Nu]])) JacobiP[-1 - b + k, -k - \[Nu], b, z] /; Element[k, Integers] && k > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], ",", RowBox[List["{", RowBox[List["a", ",", " ", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "k"]]]], "}"]]]], "]"]], " ", "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "+", "k"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "b", "+", "k"]], ",", RowBox[List[RowBox[List["-", "k"]], "-", "\[Nu]"]], ",", "b", ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> res </mi> <mi> a </mi> </msub> <mo> ( </mo> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> a </ci> </apply> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiP </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Residue", "[", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], ",", RowBox[List["{", RowBox[List["a_", ",", RowBox[List[RowBox[List["-", "\[Nu]_"]], "-", "k_"]]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "+", "k"]], "]"]]]], ")"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "b", "+", "k"]], ",", RowBox[List[RowBox[List["-", "k"]], "-", "\[Nu]"]], ",", "b", ",", "z"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29