Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > Identities > Recurrence identities > Consecutive neighbors > With respect to a





http://functions.wolfram.com/07.15.17.0014.01









  


  










Input Form





JacobiP[\[Nu], a, b, z] == ((a (3 - z) - b (z - 1) - 2 (-2 + \[Nu] (z - 1) + z))/(2 (1 + a + \[Nu]))) JacobiP[\[Nu], a + 1, b, z] + (((2 + a + b + \[Nu]) (z - 1))/ (2 (1 + a + \[Nu]))) JacobiP[\[Nu], a + 2, b, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["a", RowBox[List["(", RowBox[List["3", "-", "z"]], ")"]]]], "-", RowBox[List["b", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], "-", RowBox[List["2", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["\[Nu]", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], "+", "z"]], ")"]]]]]], RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]], " "]]], " ", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", "+", "1"]], ",", "b", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "+", "\[Nu]"]], ")"]], RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]], " "]]], RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", "+", "2"]], ",", "b", ",", "z"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["3", "-", "z"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], "+", "z"]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", "+", "1"]], ",", "b", ",", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], ")"]], " ", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", "+", "2"]], ",", "b", ",", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.