Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > Summation > Infinite summation





http://functions.wolfram.com/07.15.23.0002.01









  


  










Input Form





Sum[(JacobiP[n, a, b, z]/(Pochhammer[a + 1, n] Pochhammer[b + 1, n])) w^n, {n, 0, Infinity}] == Hypergeometric0F1[a + 1, ((z - 1) w)/2] Hypergeometric0F1[b + 1, ((z + 1) w)/2] /; -1 < z < 1 && Abs[w] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", "n"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b", "+", "1"]], ",", "n"]], "]"]]]]], " ", SuperscriptBox["w", "n"]]]]], "\[Equal]", RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "w"]], "2"]]], "]"]], RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["b", "+", "1"]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "w"]], "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mi> n </mi> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot; &quot;, &quot;w&quot;]], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot; &quot;, &quot;w&quot;]], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> z </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> w </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> n </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Hypergeometric0F1 </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> w </ci> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> w </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <apply> <abs /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], " ", SuperscriptBox["w_", "n_"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a_", "+", "1"]], ",", "n_"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b_", "+", "1"]], ",", "n_"]], "]"]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", "w"]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["b", "+", "1"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], " ", "w"]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "&&", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.