Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > Operations > Orthogonality, completeness, and Fourier expansions





http://functions.wolfram.com/07.15.25.0005.01









  


  










Input Form





Sum[(Sqrt[(n! (a + b + 2 n + 1) Gamma[a + b + n + 1])/ (2^(a + b + 1) Gamma[a + n + 1] Gamma[b + n + 1])] (1 - x)^(a/2) (1 + x)^(b/2) JacobiP[n, a, b, x]) (Sqrt[(n! (a + b + 2 n + 1) Gamma[a + b + n + 1])/ (2^(a + b + 1) Gamma[a + n + 1] Gamma[b + n + 1])] (1 - y)^(a/2) (1 + y)^(b/2) JacobiP[n, a, b, y]), {n, 0, Infinity}] == DiracDelta[x - y] /; -1 < x < 1 && -1 < y < 1 && Re[a] > -1 && Re[b] > -1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n", "+", "1"]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["a", "+", "b", "+", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "n", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b", "+", "n", "+", "1"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "x"]], ")"]], FractionBox["a", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], FractionBox["b", "2"]], " ", RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "x"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n", "+", "1"]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["a", "+", "b", "+", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "n", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b", "+", "n", "+", "1"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "y"]], ")"]], FractionBox["a", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "y"]], ")"]], FractionBox["b", "2"]], " ", RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "y"]], "]"]]]], ")"]]]]]], "\[Equal]", RowBox[List["DiracDelta", "[", RowBox[List["x", "-", "y"]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "1"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "y", "<", "1"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", RowBox[List["-", "1"]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", "b", "]"]], ">", RowBox[List["-", "1"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> b </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> b </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> DiracDelta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> x </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> y </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> x </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> x </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> y </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <ci> DiracDelta </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> y </ci> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["n_", "!"]], " ", RowBox[List["(", RowBox[List["a_", "+", "b_", "+", RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a_", "+", "b_", "+", "n_", "+", "1"]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["a_", "+", "b_", "+", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a_", "+", "n_", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b_", "+", "n_", "+", "1"]], "]"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "x_"]], ")"]], FractionBox["a_", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x_"]], ")"]], FractionBox["b_", "2"]], " ", RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "x_"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["n_", "!"]], " ", RowBox[List["(", RowBox[List["a_", "+", "b_", "+", RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a_", "+", "b_", "+", "n_", "+", "1"]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["a_", "+", "b_", "+", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a_", "+", "n_", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b_", "+", "n_", "+", "1"]], "]"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "y_"]], ")"]], FractionBox["a_", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "y_"]], ")"]], FractionBox["b_", "2"]], " ", RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "y_"]], "]"]]]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["DiracDelta", "[", RowBox[List["x", "-", "y"]], "]"]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "1"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "y", "<", "1"]], "&&", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", RowBox[List["-", "1"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "b", "]"]], ">", RowBox[List["-", "1"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.