html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 LegendreP

 http://functions.wolfram.com/07.08.03.0005.01

 Input Form

 LegendreP[\[Nu], \[Mu], 2, -1] == ComplexInfinity /; !Element[\[Nu], Integers]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", InterpretationBox["ComplexInfinity", DirectedInfinity[]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]

 MathML Form

 P TagBox["P", LegendreP] ν μ ( - 1 TagBox[RowBox[List["-", "1"]], HoldComplete[LegendreP, 2]] ) ~ /; ν TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] Condition LegendreP ν μ 2 -1 OverTilde ν [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["ComplexInfinity", "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29