Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,2,z] > Series representations > Generalized power series > Expansions at generic point z==z0 > For the function itself





http://functions.wolfram.com/07.08.06.0043.01









  


  










Input Form





LegendreP[\[Nu], \[Mu], 2, z] == ((Sin[Pi \[Nu]]/(Pi Gamma[-\[Mu] - \[Nu]] Gamma[1 - \[Mu] + \[Nu]])) (1/(1 + Subscript[z, 0]))^((1/2) \[Mu] Floor[Arg[z - Subscript[z, 0]]/ (2 Pi)]) (1 + Subscript[z, 0])^((1/2) \[Mu] (1 + Floor[Arg[z - Subscript[z, 0]]/(2 Pi)])) ((2 I Pi Floor[Arg[z - Subscript[z, 0]]/(2 Pi)] Floor[(Pi + Arg[1 + Subscript[z, 0]])/(2 Pi)] Gamma[-\[Nu]] Gamma[1 + \[Nu]] Hypergeometric2F1Regularized[-\[Nu], 1 + \[Nu], 1 + \[Mu], (1/2) (1 + Subscript[z, 0])])/ E^(I Pi \[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) - MeijerG[{{1 + \[Nu], -\[Nu]}, {}}, {{0, -\[Mu]}, {}}, (1/2) (1 + Subscript[z, 0])]/((1/(1 + Subscript[z, 0]))^ (\[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) (1 + Subscript[z, 0])^(\[Mu] Floor[Arg[z - Subscript[z, 0]]/ (2 Pi)])) + ((1/(2 (-1 + Subscript[z, 0]^2))) (2 E^(I Pi \[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) \[Mu] MeijerG[{{1 + \[Nu], -\[Nu]}, {}}, {{0, -\[Mu]}, {}}, (1/2) (1 + Subscript[z, 0])] + E^(I Pi \[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) MeijerG[{{\[Nu], -1 - \[Nu]}, {}}, {{0, -1 - \[Mu]}, {}}, (1/2) (1 + Subscript[z, 0])] (-1 + Subscript[z, 0]^2) + 2 I Pi Floor[Arg[z - Subscript[z, 0]]/(2 Pi)] Floor[(Pi + Arg[1 + Subscript[z, 0]])/(2 Pi)] (1/(1 + Subscript[z, 0]))^(\[Mu] Floor[Arg[z - Subscript[z, 0]]/ (2 Pi)]) (1 + Subscript[z, 0])^(\[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) (-2 \[Mu] Gamma[-\[Nu]] Gamma[2 + \[Nu]] Hypergeometric2F1Regularized[-\[Nu], 1 + \[Nu], 1 + \[Mu], (1/2) (1 + Subscript[z, 0])] + Gamma[1 - \[Nu]] Gamma[1 + \[Nu]] (Subscript[z, 0]^2 - 1) Hypergeometric2F1Regularized[1 - \[Nu], 2 + \[Nu], 2 + \[Mu], (1/2) (1 + Subscript[z, 0])])) (z - Subscript[z, 0]))/ (E^(I Pi \[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) (1/(1 + Subscript[z, 0]))^(\[Mu] Floor[Arg[z - Subscript[z, 0]]/ (2 Pi)]) (1 + Subscript[z, 0])^ (\[Mu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)])) + \[Ellipsis]))/ ((1/(1 - Subscript[z, 0]))^((1/2) \[Mu] Floor[Arg[-z + Subscript[z, 0]]/ (2 Pi)]) (1 - Subscript[z, 0])^((1/2) \[Mu] (1 + Floor[Arg[-z + Subscript[z, 0]]/(2 Pi)]))) /; (z -> Subscript[z, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " "]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "-", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Mu]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", "\[Mu]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["z", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["z", "0", "2"]]], ")"]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", "\[Mu]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List[RowBox[List["-", "1"]], "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["z", "0", "2"]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["z", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["z", "0"]]]], ")"]], RowBox[List["\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]], RowBox[List["\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]", " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[SubsuperscriptBox["z", "0", "2"], "-", "1"]], ")"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["z", "0"]]], ")"]]]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], " ", "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mtext> </mtext> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[SubscriptBox[&quot;z&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[FractionBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mi> &#957; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[FractionBox[RowBox[List[SubscriptBox[&quot;z&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;\[Nu]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;-&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], &quot;-&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> &#956; </ci> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> &#956; </ci> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </list> <list /> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <ci> &#956; </ci> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </list> <list /> </list> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <ci> &#957; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> <list /> </list> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "-", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Mu]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", "\[Mu]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", "\[Mu]", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List[RowBox[List["-", "1"]], "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["zz", "0", "2"]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List["\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Mu]", " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[SubsuperscriptBox["zz", "0", "2"], "-", "1"]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["zz", "0"]]], ")"]]]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["zz", "0", "2"]]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.