Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,3,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/07.09.13.0008.01









  


  










Input Form





Wronskian[z^s LegendreP[\[Nu], \[Mu], 3, a z^r], z^s LegendreQ[\[Nu], \[Mu], 3, a z^r], z] == (a E^(I Pi \[Mu]) r z^(-1 + r + 2 s) (Gamma[1 + \[Mu] + \[Nu]]/ Gamma[1 - \[Mu] + \[Nu]]) (1 - a^2 z^(2 r))^(-1 + \[Mu]/2))/ ((-1 - a z^r)^(\[Mu]/2) (-1 + a z^r)^(\[Mu]/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["z", "s"], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["z", "s"], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]], " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]]], FractionBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Mu]"]], "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["\[Mu]", "2"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], HoldComplete[LegendreQ, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> r </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#956; </ci> </apply> </apply> <ci> r </ci> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "s_"], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["z_", "s_"], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Mu]"]]], " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]], RowBox[List["-", FractionBox["\[Mu]", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]], RowBox[List["-", FractionBox["\[Mu]", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["\[Mu]", "2"]]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.