Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,2,z] > Representations through more general functions > Through Meijer G > Generalized cases involving unit step theta





http://functions.wolfram.com/07.11.26.0024.01









  


  










Input Form





(UnitStep[Abs[z] - 1]/Sqrt[z^2 - 1]) (LegendreQ[\[Nu], \[Mu], 2, -(Sqrt[-1 + z^2]/z)] + LegendreQ[\[Nu], \[Mu], 2, Sqrt[-1 + z^2]/z]) == (-((2^\[Mu] Pi^2 Tan[((\[Mu] + \[Nu])/2) Pi])/(Gamma[(1 - \[Mu] - \[Nu])/2] Gamma[1 + (\[Nu] - \[Mu])/2]))) MeijerG[{{(1 + \[Mu])/2, (1 - \[Mu])/2}, {}}, {{}, {(1 + \[Nu])/2, -(\[Nu]/2)}}, z, 1/2] /; !Element[\[Nu], Integers] && !Element[\[Mu], Integers] && Re[z] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[FractionBox[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "-", "1"]], "]"]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]], RowBox[List["(", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", RowBox[List["-", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], "z"]]]]], "]"]], "+", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]], "z"]]], "]"]]]], ")"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", "\[Mu]"], SuperscriptBox["\[Pi]", "2"], RowBox[List["Tan", "[", RowBox[List[FractionBox[RowBox[List["\[Mu]", "+", "\[Nu]"]], "2"], "\[Pi]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"]]], " ", "]"]]]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Mu]"]], "2"], ",", FractionBox[RowBox[List["1", "-", "\[Mu]"]], "2"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mfrac> <mrow> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> z </mi> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[SqrtBox[RowBox[List[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;-&quot;, &quot;1&quot;]]], &quot;z&quot;], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mo> - </mo> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> z </mi> </mfrac> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;-&quot;, FractionBox[SqrtBox[RowBox[List[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;-&quot;, &quot;1&quot;]]], &quot;z&quot;]]], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Mu]&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#956; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> tan </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <ci> &#915; </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> &#915; </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list /> </list> <list> <list /> <list> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> </list> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> <apply> <notin /> <ci> &#956; </ci> <integers /> </apply> <apply> <gt /> <apply> <times /> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z_", "]"]], "-", "1"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", RowBox[List["-", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z_", "2"]]]], "z_"]]]]], "]"]], "+", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z_", "2"]]]], "z_"]]], "]"]]]], ")"]]]], SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Mu]"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Mu]"]], "2"], ",", FractionBox[RowBox[List["1", "-", "\[Mu]"]], "2"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.