Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,3,z] > Specific values > Specialized values > For fixed nu, z





http://functions.wolfram.com/07.12.03.0012.01









  


  










Input Form





LegendreQ[\[Nu], \[Nu], 3, z] == (-(E^(I Pi \[Nu])/(2 Sqrt[Pi]))) Gamma[\[Nu] + 1] (z + 1)^(\[Nu]/2) (z - 1)^(\[Nu]/2) ((Sqrt[Pi] ((1 - z)^\[Nu]/(z - 1)^\[Nu]) Beta[(1 - z)/2, -\[Nu], -\[Nu]])/ 2^\[Nu] - 2^\[Nu] Gamma[-\[Nu]] Gamma[\[Nu] + 1/2]) /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Nu]", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], RowBox[List["2", SqrtBox["\[Pi]"]]]]]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], SqrtBox["\[Pi]"], " ", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "\[Nu]"], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Nu]"]], RowBox[List["Beta", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["2", "\[Nu]"], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["1", "/", "2"]]]], "]"]]]]]], ")"]]]]]], "/;", " ", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#957; </mi> </msubsup> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mi> z </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> &#957; </ci> </apply> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Beta </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Nu]_", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["\[Nu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["Beta", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", "\[Nu]"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Nu]"]], "-", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", FractionBox["1", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.