Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,3,z] > Specific values > Specialized values > For fixed mu, z





http://functions.wolfram.com/07.12.03.0030.01









  


  










Input Form





LegendreQ[n, m, 3, z] == 2^(-1 - n) (n + m)! n! (z - 1)^(Abs[m]/2) (z + 1)^(n - Abs[m]/2) (Sum[(((-1)^(-k + Abs[m]) (Abs[m] - k - 1)!)/(k! (n - k)! (Abs[m] + n - k)!)) ((z - 1)/(z + 1))^(k - Abs[m]), {k, 0, Abs[m] - 1}] + Sum[(1/(k! (k + Abs[m])! (n - k)! (n - Abs[m] - k)!)) (PolyGamma[1 + k] + PolyGamma[1 + k + Abs[m]] - PolyGamma[n - k + 1] - PolyGamma[n - Abs[m] - k + 1] + Log[z + 1] - Log[z - 1]) ((z - 1)/(z + 1))^k, {k, 0, n - Abs[m]}] + Sum[(((-1)^(n - k + Abs[m] - 1) (k + Abs[m] - n - 1)!)/ (k! (k + Abs[m])! (n - k)!)) ((z - 1)/(z + 1))^k, {k, n - Abs[m] + 1, n}]) /; Element[n, Integers] && n >= 0 && Element[m, Integers] && Abs[m] <= n










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["n", ",", "m", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]], RowBox[List["n", "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["n", "-", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "/", "2"]]]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", RowBox[List["Abs", "[", "m", "]"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "-", "k", "-", "1"]], ")"]], "!"]]]], RowBox[List[" ", RowBox[List[RowBox[List["k", "!"]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "+", "n", "-", "k"]], ")"]], "!"]]]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]], ")"]], RowBox[List["k", "-", RowBox[List["Abs", "[", "m", "]"]]]]]]]]], " ", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]]]]], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "m", "]"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]], "-", "k"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", RowBox[List["Abs", "[", "m", "]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["n", "-", "k", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]], "-", "k", "+", "1"]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]], ")"]], "k"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]], "+", "1"]]]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k", "+", RowBox[List["Abs", "[", "m", "]"]], "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "m", "]"]], "-", "n", "-", "1"]], ")"]], "!"]], " "]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "m", "]"]]]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]], ")"]], "k"]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[LessEqual]", "n"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreQ, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mi> Abs </mi> <mo> [ </mo> <mi> m </mi> <mo> ] </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> </msup> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <ci> n </ci> </apply> <ci> m </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <abs /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <abs /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <abs /> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <abs /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <ci> m </ci> </apply> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> m </ci> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <abs /> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <abs /> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> m </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <abs /> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <abs /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <abs /> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <integers /> </apply> <apply> <leq /> <apply> <abs /> <ci> m </ci> </apply> <ci> n </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["n_", ",", "m_", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], FractionBox[RowBox[List["Abs", "[", "m", "]"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["n", "-", FractionBox[RowBox[List["Abs", "[", "m", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "k"]], "+", RowBox[List["Abs", "[", "m", "]"]]]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "-", "k", "-", "1"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]], ")"]], RowBox[List["k", "-", RowBox[List["Abs", "[", "m", "]"]]]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "+", "n", "-", "k"]], ")"]], "!"]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]]]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", RowBox[List["Abs", "[", "m", "]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["n", "-", "k", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]], "-", "k", "+", "1"]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "m", "]"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]], "-", "k"]], ")"]], "!"]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["n", "-", RowBox[List["Abs", "[", "m", "]"]], "+", "1"]]]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k", "+", RowBox[List["Abs", "[", "m", "]"]], "-", "1"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "m", "]"]], "-", "n", "-", "1"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], RowBox[List["z", "+", "1"]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "m", "]"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[LessEqual]", "n"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.