Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,3,z] > Specific values > Specialized values > For fixed z





http://functions.wolfram.com/07.12.03.0103.01









  


  










Input Form





LegendreQ[6, 3, 3, z] == (-512 + 6 z^2 (1221 - 7 z^2 (483 - 485 z^2 + 165 z^4)) + 315 z (-1 + z^2)^3 (-3 + 11 z^2) (Log[z + 1] - Log[z - 1]))/ (4 (z - 1)^(3/2) (z + 1)^(3/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["6", ",", "3", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "512"]], "+", RowBox[List["6", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["1221", "-", RowBox[List["7", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["483", "-", RowBox[List["485", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["165", " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["315", " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["11", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> &#120084; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[GothicCapitalQ]&quot;, LegendreQ] </annotation> </semantics> <mn> 6 </mn> <mn> 3 </mn> </msubsup> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mi> z </mi> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 315 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1221 </mn> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 165 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 485 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 483 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 512 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> &#120084; </ci> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 315 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1221 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 165 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 485 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 483 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -512 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["6", ",", "3", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", "512"]], "+", RowBox[List["6", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["1221", "-", RowBox[List["7", " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["483", "-", RowBox[List["485", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["165", " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["315", " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["11", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["z", "+", "1"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.