Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/07.10.13.0009.01









  


  










Input Form





Derivative[2][w][z] - ((Log[r] + a^2 r^(2 z) (Log[r] - 2 Log[s]) + 2 Log[s])/ (1 - a^2 r^(2 z))) Derivative[1][w][z] + ((a^2 \[Nu] (1 + \[Nu]) r^(2 z) Log[r]^2)/(1 - a^2 r^(2 z)) + ((1 + a^2 r^(2 z)) Log[r] Log[s])/(1 - a^2 r^(2 z)) + Log[s]^2) w[z] == 0 /; w[z] == Subscript[c, 1] s^z LegendreP[\[Nu], a r^z] + Subscript[c, 2] s^z LegendreQ[\[Nu], a r^z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["Log", "[", "r", "]"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "s", "]"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "s", "]"]], " "]]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "r", "]"]], "2"]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]], ")"]], " ", RowBox[List["Log", "[", "r", "]"]], " ", RowBox[List["Log", "[", "s", "]"]]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]]], "+", SuperscriptBox[RowBox[List["Log", "[", "s", "]"]], "2"]]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["s", "z"], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["s", "z"], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ln /> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> r </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> s </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ln /> <ci> r </ci> </apply> <apply> <ln /> <ci> s </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r_", "]"]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r_", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", "s_", "]"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "s_", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["a_", "2"], " ", "\[Nu]_", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]_"]], ")"]], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "r_", "]"]], "2"]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]], ")"]], " ", RowBox[List["Log", "[", "r_", "]"]], " ", RowBox[List["Log", "[", "s_", "]"]]]], RowBox[List["1", "-", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]]], "+", SuperscriptBox[RowBox[List["Log", "[", "s_", "]"]], "2"]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["s", "z"], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["s", "z"], " ", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.