Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
MeijerG






Mathematica Notation

Traditional Notation









Hypergeometric Functions > MeijerG[{{a1,...,an},{an+1,...,ap}},{{b1,...,bm},{bm+1,...,bq}},z] > Series representations > Asymptotic series expansions at z==infinity for q>p > Expansions for q==p+2





http://functions.wolfram.com/07.34.06.0031.02









  


  










Input Form





MeijerG[{{Subscript[a, 1], \[Ellipsis], Subscript[a, n]}, {Subscript[a, n + 1], \[Ellipsis], Subscript[a, p]}}, {{Subscript[b, 1], \[Ellipsis], Subscript[b, m]}, {Subscript[b, m + 1], \[Ellipsis], Subscript[b, p + 2]}}, z] \[Proportional] Pi^(m + n - p) Sum[(Product[Sin[(Subscript[a, j] - Subscript[b, k]) Pi], {j, n + 1, p}]/Product[If[j == k, 1, Sin[Pi (Subscript[b, j] - Subscript[b, k])]], {j, 1, m}]) z^Subscript[b, k] Sum[(Product[If[s == i, 1, Gamma[Subscript[a, i] - Subscript[a, s]]], {s, 1, p}]/(Sin[(Subscript[a, i] - Subscript[b, k]) Pi] Product[Gamma[Subscript[a, i] - Subscript[b, s]], {s, 1, p + 2}])) ((-1)^(p - m - n - 1) z)^(Subscript[a, i] - Subscript[b, k] - 1) (1 + O[1/z]), {i, 1, p}], {k, 1, m}] + (Pi^(m + n - p - 3/2)/2) Sum[(Product[Sin[(Subscript[a, j] - Subscript[b, k]) Pi], {j, n + 1, p}]/ Product[If[j == k, 1, Sin[Pi (Subscript[b, j] - Subscript[b, k])]], {j, 1, m}]) z^Subscript[b, k] ((-1)^(p - m - n - 1) z)^ (\[Chi] - Subscript[b, k]) (E^(I ((\[Chi] - Subscript[b, k]) Pi + 2 Sqrt[(-1)^(p - m - n - 1) z])) (1 + O[1/Sqrt[(-1)^(p - m - n - 1) z]]) + (1 + O[1/Sqrt[(-1)^(p - m - n - 1) z]])/ E^(I ((\[Chi] - Subscript[b, k]) Pi + 2 Sqrt[(-1)^(p - m - n - 1) z]))), {k, 1, m}] /; (Abs[z] -> Infinity) && \[Chi] == (1/2) (Sum[Subscript[b, j], {j, 1, p + 2}] - Sum[Subscript[a, j], {j, 1, p}] - 1/2) && ForAll[{j, k}, Element[{j, k}, Integers] && j != k && 1 <= j <= n && 1 <= k <= n, !Element[Subscript[a, j] - Subscript[a, k], Integers]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", RowBox[List["n", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "m"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", RowBox[List["m", "+", "1"]]], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["p", "+", "2"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", " ", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]], SuperscriptBox["z", SubscriptBox["b", "k"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "p"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], "p"], RowBox[List["If", "[", RowBox[List[RowBox[List["s", "\[Equal]", "i"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["a", "s"]]], "]"]]]], "]"]]]], RowBox[List[RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], RowBox[List["p", "+", "2"]]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["b", "s"]]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["b", "k"], "-", "1"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]]]]]]]], "+", " ", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", FractionBox["3", "2"]]]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]], SuperscriptBox["z", SubscriptBox["b", "k"]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", " ", "-", SubscriptBox["b", "k"]]], ")"]], "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", " ", "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "+", "2"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", FractionBox["1", "2"]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "n"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "n"]]]]]]], RowBox[List["(", "\[InvisibleSpace]", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mi> p </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;p&quot;, &quot;,&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, &quot;2&quot;]]]], RowBox[List[&quot;m&quot;, &quot;,&quot;, &quot;n&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;n&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;m&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> p </mi> </munderover> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <munderover> <mrow> <mtext> </mtext> <mo> &#8719; </mo> </mrow> <munder> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> </munder> <mi> m </mi> </munderover> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <msub> <mi> b </mi> <mi> k </mi> </msub> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#967; </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#967; </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#967; </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> p </mi> </munderover> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <munderover> <mrow> <mtext> </mtext> <mo> &#8719; </mo> </mrow> <munder> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> </munder> <mi> m </mi> </munderover> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <msub> <mi> b </mi> <mi> k </mi> </msub> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <munderover> <mrow> <mtext> </mtext> <mo> &#8719; </mo> </mrow> <munder> <mrow> <mi> s </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> s </mi> <mo> &#8800; </mo> <mi> i </mi> </mrow> </munder> <mi> p </mi> </munderover> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> s </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> s </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#967; </mi> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mo> &#8704; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mrow> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mo> &#172; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mi> p </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;p&quot;, &quot;,&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, &quot;2&quot;]]]], RowBox[List[&quot;m&quot;, &quot;,&quot;, &quot;n&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;n&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;m&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> p </mi> </munderover> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <munderover> <mrow> <mtext> </mtext> <mo> &#8719; </mo> </mrow> <munder> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> </munder> <mi> m </mi> </munderover> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <msub> <mi> b </mi> <mi> k </mi> </msub> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#967; </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#967; </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#967; </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> p </mi> </munderover> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <munderover> <mrow> <mtext> </mtext> <mo> &#8719; </mo> </mrow> <munder> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> </munder> <mi> m </mi> </munderover> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <msub> <mi> b </mi> <mi> k </mi> </msub> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <munderover> <mrow> <mtext> </mtext> <mo> &#8719; </mo> </mrow> <munder> <mrow> <mi> s </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> s </mi> <mo> &#8800; </mo> <mi> i </mi> </mrow> </munder> <mi> p </mi> </munderover> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> s </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> s </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#967; </mi> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mo> &#8704; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8800; </mo> <mi> k </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mrow> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mo> &#172; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "n_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a_", RowBox[List["n_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "m_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", RowBox[List["m_", "+", "1"]]], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", RowBox[List["p_", "+", "2"]]]]], "}"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", SubscriptBox["b", "k"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "p"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], "p"], RowBox[List["If", "[", RowBox[List[RowBox[List["s", "\[Equal]", "i"]], ",", "1", ",", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["aa", "s"]]], "]"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["b", "k"], "-", "1"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["s", "=", "1"]], RowBox[List["p", "+", "2"]]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "i"], "-", SubscriptBox["bb", "s"]]], "]"]]]]]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[Pi]", RowBox[List["m", "+", "n", "-", "p", "-", FractionBox["3", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", RowBox[List["n", "+", "1"]]]], "p"], RowBox[List["Sin", "[", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", SubscriptBox["b", "k"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ")"]], RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "2"]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[Chi]", "-", SubscriptBox["b", "k"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "-", "m", "-", "n", "-", "1"]]], " ", "z"]], ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["1", "2"]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List["If", "[", RowBox[List[RowBox[List["j", "\[Equal]", "k"]], ",", "1", ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]]]], "]"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "+", "2"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", FractionBox["1", "2"]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "n"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "n"]]]]]]], RowBox[List["(", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]]]], ")"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.