Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ParabolicCylinderD






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ParabolicCylinderD[nu,z] > Specific values > Specialized values > For fixed z > Symbolic rational nu





http://functions.wolfram.com/07.41.03.0023.01









  


  










Input Form





ParabolicCylinderD[-n - 1, z] == ((Sqrt[Pi] I^n)/(2^((n + 1)/2) n!)) E^(z^2/4) HermiteH[n, (I z)/Sqrt[2]] Erfc[z/Sqrt[2]] + (((2^((1 - n)/2) I^n)/n!) Sum[Binomial[n, k] (-I)^k HermiteH[n - k, (I z)/Sqrt[2]] HermiteH[k - 1, z/Sqrt[2]], {k, 1, n}])/ E^(z^2/4) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ParabolicCylinderD", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "-", "1"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", FractionBox[RowBox[List["n", "+", "1"]], "2"]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["\[ImaginaryI]", "n"], " "]], RowBox[List["n", "!"]]], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "4"]], " ", RowBox[List["HermiteH", "[", RowBox[List["n", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]], "]"]], " ", RowBox[List["Erfc", "[", FractionBox["z", SqrtBox["2"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", FractionBox[RowBox[List["1", "-", "n"]], "2"]], " ", SuperscriptBox["\[ImaginaryI]", "n"]]], RowBox[List["n", "!"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List["k", "-", "1"]], ",", FractionBox["z", SqrtBox["2"]]]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> D </mi> <annotation encoding='Mathematica'> TagBox[&quot;D&quot;, ParabolicCylinderD] </annotation> </semantics> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mi> n </mi> </msup> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mi> n </mi> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mi> n </mi> </msup> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ParabolicCylinderD </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <imaginaryi /> <ci> n </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HermiteH </ci> <ci> n </ci> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <imaginaryi /> <ci> n </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <apply> <ci> HermiteH </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HermiteH </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ParabolicCylinderD", "[", RowBox[List[RowBox[List[RowBox[List["-", "n_"]], "-", "1"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "4"]], " ", RowBox[List["HermiteH", "[", RowBox[List["n", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]], "]"]], " ", RowBox[List["Erfc", "[", FractionBox["z", SqrtBox["2"]], "]"]]]], RowBox[List["n", "!"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", FractionBox[RowBox[List["1", "-", "n"]], "2"]], " ", SuperscriptBox["\[ImaginaryI]", "n"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List[RowBox[List["k", "-", "1"]], ",", FractionBox["z", SqrtBox["2"]]]], "]"]]]]]]]], RowBox[List["n", "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.