Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ParabolicCylinderD






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ParabolicCylinderD[nu,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/07.41.06.0010.01









  


  










Input Form





ParabolicCylinderD[\[Nu], z] == (2^(\[Nu]/2) Sqrt[Pi] ((1/Gamma[(1 - \[Nu])/2]) Hypergeometric1F1[ -(\[Nu]/2), 1/2, z^2/2] - ((Sqrt[2] z)/Gamma[-(\[Nu]/2)]) Hypergeometric1F1[(1 - \[Nu])/2, 3/2, z^2/2]))/E^(z^2/4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["2", FractionBox["\[Nu]", "2"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "]"]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[SuperscriptBox["z", "2"], "2"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox["2"], " ", "z"]], RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Nu]", "2"]]], "]"]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", FractionBox["3", "2"], ",", FractionBox[SuperscriptBox["z", "2"], "2"]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> D </mi> <annotation encoding='Mathematica'> TagBox[&quot;D&quot;, ParabolicCylinderD] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> ParabolicCylinderD </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List["\[Nu]", "/", "2"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[SuperscriptBox["z", "2"], "2"]]], "]"]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], " ", "z"]], ")"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", FractionBox["3", "2"], ",", FractionBox[SuperscriptBox["z", "2"], "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Nu]", "2"]]], "]"]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.