Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ParabolicCylinderD






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ParabolicCylinderD[nu,z] > Representations through more general functions > Through hypergeometric functions > Involving hypergeometric U





http://functions.wolfram.com/07.41.26.0009.01









  


  










Input Form





ParabolicCylinderD[\[Nu], z] == (((2^(-1 - \[Nu]/2) Sin[Pi \[Nu]])/(Sqrt[-z^2] Cos[(Pi \[Nu])/2] + Sqrt[z^2] Sin[(Pi \[Nu])/2])) ((-((Sqrt[-z^2] (z - Sqrt[z^2]) Gamma[1 + \[Nu]])/Sqrt[2 Pi])) E^(z^2/2) HypergeometricU[1 + \[Nu]/2, 3/2, -(z^2/2)] + 2^\[Nu] (Sqrt[-z^2] Csc[(Pi \[Nu])/2] + z Sec[(Pi \[Nu])/2]) HypergeometricU[-(\[Nu]/2), 1/2, z^2/2]))/E^(z^2/4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["\[Nu]", "2"]]]], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["z", "-", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "2"]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", FractionBox["3", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "2"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", RowBox[List["z", " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]]]], ")"]], RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[SuperscriptBox["z", "2"], "2"]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> D </mi> <annotation encoding='Mathematica'> TagBox[&quot;D&quot;, ParabolicCylinderD] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> ParabolicCylinderD </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <sec /> <apply> <times /> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricU </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricU </ci> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["\[Nu]", "2"]]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["z", "-", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "2"], "2"]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", FractionBox["3", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "2"]]]]], "]"]]]], SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "+", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", RowBox[List["z", " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[SuperscriptBox["z", "2"], "2"]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]], "+", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "2"], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.