Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SixJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SixJSymbol[{j1,j2,j3},{j4,j5,j6}] > Identities > Recurrence identities > Consecutive neighbors





http://functions.wolfram.com/07.40.17.0001.01









  


  










Input Form





SixJSymbol[{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3]}, {Subscript[j, 4], Subscript[j, 5], Subscript[j, 6]}] == -((2 Subscript[j, 3] + 3) ((Subscript[j, 1] (1 + Subscript[j, 1]) + Subscript[j, 2] (1 + Subscript[j, 2]) - (1 + Subscript[j, 3]) (2 + Subscript[j, 3])) ((1 + Subscript[j, 3]) (2 + Subscript[j, 3]) - Subscript[j, 4] (1 + Subscript[j, 4]) - Subscript[j, 5] (1 + Subscript[j, 5])) + 2 (Subscript[j, 1] (1 + Subscript[j, 1]) Subscript[j, 4] (1 + Subscript[j, 4]) + Subscript[j, 2] (1 + Subscript[j, 2]) Subscript[j, 5] (1 + Subscript[j, 5]) - (1 + Subscript[j, 3]) (2 + Subscript[j, 3]) Subscript[j, 6] (1 + Subscript[j, 6]))) SixJSymbol[{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3] + 1}, {Subscript[j, 4], Subscript[j, 5], Subscript[j, 6]}] + (1 + Subscript[j, 3]) Sqrt[-1 + Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3]] Sqrt[2 + Subscript[j, 1] - Subscript[j, 2] + Subscript[j, 3]] Sqrt[2 - Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3]] Sqrt[3 + Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3]] Sqrt[2 + Subscript[j, 3] + Subscript[j, 4] - Subscript[j, 5]] Sqrt[2 + Subscript[j, 3] - Subscript[j, 4] + Subscript[j, 5]] Sqrt[-1 - Subscript[j, 3] + Subscript[j, 4] + Subscript[j, 5]] Sqrt[3 + Subscript[j, 3] + Subscript[j, 4] + Subscript[j, 5]] SixJSymbol[{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3] + 2}, {Subscript[j, 4], Subscript[j, 5], Subscript[j, 6]}])/((Subscript[j, 3] + 2) Sqrt[Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3]] Sqrt[1 + Subscript[j, 1] - Subscript[j, 2] + Subscript[j, 3]] Sqrt[1 - Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3]] Sqrt[2 + Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3]] Sqrt[1 + Subscript[j, 3] + Subscript[j, 4] - Subscript[j, 5]] Sqrt[1 + Subscript[j, 3] - Subscript[j, 4] + Subscript[j, 5]] Sqrt[-Subscript[j, 3] + Subscript[j, 4] + Subscript[j, 5]] Sqrt[2 + Subscript[j, 3] + Subscript[j, 4] + Subscript[j, 5]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["j", "3"]]], "+", "3"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["j", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "1"]]], ")"]]]], "+", RowBox[List[SubscriptBox["j", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "2"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["j", "3"]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["j", "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["j", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "4"]]], ")"]]]], "-", RowBox[List[SubscriptBox["j", "5"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "5"]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["j", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "1"]]], ")"]], " ", SubscriptBox["j", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "4"]]], ")"]]]], "+", RowBox[List[SubscriptBox["j", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "2"]]], ")"]], " ", SubscriptBox["j", "5"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "5"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["j", "3"]]], ")"]], " ", SubscriptBox["j", "6"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "6"]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["j", "3"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["3", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["3", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["j", "3"], "+", "2"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", "2"]], ")"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["1", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["1", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["1", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["1", "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "3"]]], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 3 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 3 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> </list> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "3"]]], "+", "3"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["j", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "1"]]], ")"]]]], "+", RowBox[List[SubscriptBox["j", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "2"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["j", "3"]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["j", "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["j", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "4"]]], ")"]]]], "-", RowBox[List[SubscriptBox["j", "5"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "5"]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["j", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "1"]]], ")"]], " ", SubscriptBox["j", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "4"]]], ")"]]]], "+", RowBox[List[SubscriptBox["j", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "2"]]], ")"]], " ", SubscriptBox["j", "5"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "5"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["j", "3"]]], ")"]], " ", SubscriptBox["j", "6"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "6"]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["j", "3"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["j", "3"]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["3", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["3", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["j", "3"], "+", "2"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", "2"]], ")"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["1", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["1", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]], " ", SqrtBox[RowBox[List["1", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["1", "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "3"]]], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]], " ", SqrtBox[RowBox[List["2", "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-12-21





© 1998- Wolfram Research, Inc.