Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SixJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SixJSymbol[{j1,j2,j3},{j4,j5,j6}] > Summation > Infinite summation





http://functions.wolfram.com/07.40.23.0001.01









  


  










Input Form





Sum[(2 Subscript[j, 10] + 1) (-1)^(Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3] + Subscript[j, 4] + Subscript[j, 5] + Subscript[j, 6] + Subscript[j, 7] + Subscript[j, 8] + Subscript[j, 9] + Subscript[j, 10]) SixJSymbol[{Subscript[j, 1], Subscript[j, 2], Subscript[j, 10]}, {Subscript[j, 3], Subscript[j, 4], Subscript[j, 7]}] SixJSymbol[{Subscript[j, 3], Subscript[j, 4], Subscript[j, 10]}, {Subscript[j, 5], Subscript[j, 6], Subscript[j, 8]}] SixJSymbol[{Subscript[j, 5], Subscript[j, 6], Subscript[j, 10]}, {Subscript[j, 2], Subscript[j, 1], Subscript[j, 9]}], {Subscript[j, 10], -Infinity, Infinity}] == SixJSymbol[{Subscript[j, 7], Subscript[j, 8], Subscript[j, 9]}, {Subscript[j, 5], Subscript[j, 1], Subscript[j, 4]}] SixJSymbol[{Subscript[j, 7], Subscript[j, 8], Subscript[j, 9]}, {Subscript[j, 6], Subscript[j, 2], Subscript[j, 3]}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "10"], "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "10"]]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"], "+", SubscriptBox["j", "6"], "+", SubscriptBox["j", "7"], "+", SubscriptBox["j", "8"], "+", SubscriptBox["j", "9"], "+", SubscriptBox["j", "10"]]]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "10"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "4"], ",", SubscriptBox["j", "7"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "4"], ",", SubscriptBox["j", "10"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"], ",", SubscriptBox["j", "8"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"], ",", SubscriptBox["j", "10"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["j", "1"], ",", SubscriptBox["j", "9"]]], "}"]]]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "7"], ",", SubscriptBox["j", "8"], ",", SubscriptBox["j", "9"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "1"], ",", SubscriptBox["j", "4"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "7"], ",", SubscriptBox["j", "8"], ",", SubscriptBox["j", "9"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "6"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> j </mi> <mn> 10 </mn> </msub> <mo> = </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 10 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 7 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 8 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 9 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 10 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 10 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 10 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 8 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 10 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 9 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 8 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 9 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 7 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 8 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 9 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 10 </cn> </apply> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 10 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 8 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 9 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 10 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> </list> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 10 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 8 </cn> </apply> </list> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 10 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 9 </cn> </apply> </list> </apply> </apply> </apply> <apply> <times /> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 8 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 9 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 5 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> </list> </apply> <apply> <ci> SixJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 7 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 8 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 9 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "10"], "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "10"]]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", SubscriptBox["j", "4"], "+", SubscriptBox["j", "5"], "+", SubscriptBox["j", "6"], "+", SubscriptBox["j", "7"], "+", SubscriptBox["j", "8"], "+", SubscriptBox["j", "9"], "+", SubscriptBox["j", "10"]]]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "10"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "4"], ",", SubscriptBox["j", "7"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["j", "4"], ",", SubscriptBox["j", "10"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"], ",", SubscriptBox["j", "8"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"], ",", SubscriptBox["j", "10"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["j", "1"], ",", SubscriptBox["j", "9"]]], "}"]]]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "7"], ",", SubscriptBox["j", "8"], ",", SubscriptBox["j", "9"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "5"], ",", SubscriptBox["j", "1"], ",", SubscriptBox["j", "4"]]], "}"]]]], "]"]], " ", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "7"], ",", SubscriptBox["j", "8"], ",", SubscriptBox["j", "9"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "6"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.