Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SphericalHarmonicY[lambda,mu,theta,phi] > Series representations > Generalized power series > Expansions at cos(theta)==infinity





http://functions.wolfram.com/07.37.06.0027.01









  


  










Input Form





SphericalHarmonicY[\[Lambda], \[Mu], \[CurlyTheta], \[CurlyPhi]] == ((Sqrt[2 \[Lambda] + 1] Sqrt[Gamma[\[Lambda] - \[Mu] + 1]])/ (2 Pi Sqrt[Gamma[\[Lambda] + \[Mu] + 1]])) E^(I \[CurlyPhi] \[Mu]) ((Cos[\[CurlyTheta]/2]^2)^(\[Mu]/2)/(Sin[\[CurlyTheta]/2]^2)^(\[Mu]/2)) (((2^\[Lambda] Gamma[1/2 + \[Lambda]])/Gamma[\[Lambda] - \[Mu] + 1]) (Cos[\[CurlyTheta]] - 1)^\[Lambda] Sum[((Pochhammer[-\[Lambda], k] Pochhammer[\[Mu] - \[Lambda], k])/ (Pochhammer[-2 \[Lambda], k] k!)) (2/(1 - Cos[\[CurlyTheta]]))^k, {k, 0, Infinity}] + ((2^(-\[Lambda] - 1) Gamma[-(1/2) - \[Lambda]])/ Gamma[-\[Mu] - \[Lambda]]) (Cos[\[CurlyTheta]] - 1)^(-1 - \[Lambda]) Sum[((Pochhammer[1 + \[Lambda], k] Pochhammer[1 + \[Mu] + \[Lambda], k])/ (Pochhammer[2 + 2 \[Lambda], k] k!)) (2/(1 - Cos[\[CurlyTheta]]))^k, {k, 0, Infinity}]) /; Abs[Sin[\[CurlyTheta]/2]] > 1 && !Element[2 \[Lambda], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]", ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]]], SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]]]], RowBox[List["2", "\[Pi]", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]", " ", "\[Mu]"]]], FractionBox[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Lambda]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "\[Lambda]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Mu]", "-", "\[Lambda]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]"]], "]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Mu]", "+", "\[Lambda]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "]"]], ">", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["2", "\[Lambda]"]], "\[Element]", "Integers"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <mi> &#955; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#955; </mi> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#955; </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Lambda]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Lambda]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;\[Lambda]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Lambda]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Lambda]&quot;, &quot;+&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Lambda]&quot;]], &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <ci> &#955; </ci> <ci> &#956; </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> &#966; </ci> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> &#955; </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> &#955; </ci> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <abs /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]_", ",", "\[Mu]_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]", " ", "\[Mu]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Lambda]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], "\[Lambda]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Mu]", "-", "\[Lambda]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Mu]", "+", "\[Lambda]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]], ")"]], "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Lambda]"]], "]"]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "]"]], ">", "1"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.