Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SphericalHarmonicY[lambda,mu,theta,phi] > Integral representations > Integral representations of negative integer order





http://functions.wolfram.com/07.37.07.0012.01









  


  










Input Form





SphericalHarmonicY[n, m, \[CurlyTheta], \[CurlyPhi]] == ((1/(2^(n + 1) Sqrt[Pi])) E^(I m \[CurlyPhi]) Sqrt[(1 + 2 n)/((n - m)! (n + m)!)] Cos[\[CurlyTheta]/2]^m (Cos[\[CurlyTheta]/2]^2)^(m/2) D[(z + 1)^(n - m) (z - 1)^(n + m), {z, n}])/((Cot[\[CurlyTheta]/2]^2)^(m/2) Sin[\[CurlyTheta]/2]^m (Sin[\[CurlyTheta]/2]^2)^(m/2)) /; z == Cos[\[CurlyTheta]] && Element[n, Integers] && n >= 0 && Element[m, Integers] && Abs[m] <= n










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["2", RowBox[List["n", "+", "1"]]], SqrtBox["\[Pi]"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[CurlyPhi]"]]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]]]]], SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cot", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List[RowBox[List["-", "m"]], "/", "2"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], RowBox[List["-", "m"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List[RowBox[List["-", "m"]], "/", "2"]]], RowBox[List["D", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["n", "-", "m"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["n", "+", "m"]]]]], ",", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Equal]", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[LessEqual]", "n"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mi> m </mi> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> cot </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#10869; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8484; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> m </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <ci> m </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> &#966; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <cot /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> &#977; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> z </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8484; </ci> </apply> <apply> <leq /> <apply> <abs /> <ci> m </ci> </apply> <ci> n </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[CurlyPhi]"]]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]]]]], " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "m"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cot", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["-", FractionBox["m", "2"]]]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], RowBox[List["-", "m"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["-", FractionBox["m", "2"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["n", "-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["n", "+", "m"]]]]], ")"]]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["n", "+", "1"]]], " ", SqrtBox["\[Pi]"]]]], "/;", RowBox[List[RowBox[List["z", "\[Equal]", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[LessEqual]", "n"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.