Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SphericalHarmonicY[lambda,mu,theta,phi] > Differentiation > Low-order differentiation > With respect to lambda





http://functions.wolfram.com/07.37.20.0003.01









  


  










Input Form





D[SphericalHarmonicY[\[Lambda], \[Mu], \[CurlyTheta], \[CurlyPhi]], \[Lambda]] == (-((2 \[Lambda] + 1)/(2 Gamma[2 - \[Mu]]))) Sqrt[(2 \[Lambda] + 1)/Pi] (Sqrt[Gamma[\[Lambda] - \[Mu] + 1]]/ Sqrt[Gamma[\[Lambda] + \[Mu] + 1]]) E^(I \[Mu] \[CurlyPhi]) ((Cos[\[CurlyTheta]/2]^2)^(\[Mu]/2)/(Sin[\[CurlyTheta]/2]^2)^ (\[Mu]/2 - 1)) HypergeometricPFQ[{{1 - \[Lambda], 2 + \[Lambda]}, {1}, {1, -\[Lambda], 1 + \[Lambda]}}, {{2, 2 - \[Mu]}, {}, {2 + \[Lambda], 1 - \[Lambda]}}, Sin[\[CurlyTheta]/2]^2, Sin[\[CurlyTheta]/2]^2] + (1/(2 (1 + 2 \[Lambda]))) (2 + (1 + 2 \[Lambda]) (PolyGamma[1 + \[Lambda] - \[Mu]] - PolyGamma[1 + \[Lambda] + \[Mu]])) SphericalHarmonicY[\[Lambda], \[Mu], \[CurlyTheta], \[CurlyPhi]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "\[Lambda]"], RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]", ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], RowBox[List["2", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Mu]"]], "]"]], " "]]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], "\[Pi]"]], FractionBox[SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Mu]", " ", "\[CurlyPhi]"]]], FractionBox[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List[RowBox[List["\[Mu]", "/", "2"]], "-", "1"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Lambda]"]], ",", RowBox[List["2", "+", "\[Lambda]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["2", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "\[Lambda]"]], ",", RowBox[List["1", "-", "\[Lambda]"]]]], "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ",", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"]]], "]"]]]], "+", " ", RowBox[List[FractionBox["1", RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]]], RowBox[List["(", RowBox[List["2", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Lambda]", "-", "\[Mu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Lambda]", "+", "\[Mu]"]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]", ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> &#955; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> &#955; </mi> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> &#955; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> &#960; </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mfrac> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 3 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> &#977; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> Y </ms> <ms> &#955; </ms> <ms> &#956; </ms> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#977; </ms> <ms> , </ms> <ms> &#966; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <ms> &#955; </ms> </list> </apply> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> - </ms> <ms> &#956; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> + </ms> <ms> &#956; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> Y </ms> <ms> &#955; </ms> <ms> &#956; </ms> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#977; </ms> <ms> , </ms> <ms> &#966; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> &#956; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ci> TraditionalForm </ci> </apply> </list> </apply> </apply> <apply> <ci> SqrtBox </ci> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> &#960; </ms> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> SqrtBox </ci> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> - </ms> <ms> &#956; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SqrtBox </ci> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> + </ms> <ms> &#956; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ci> TraditionalForm </ci> </apply> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> &#956; </ms> <ms> &#966; </ms> </list> </apply> </apply> <apply> <ci> FormBox </ci> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> cos </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> &#977; </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#956; </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> &#977; </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#956; </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> </apply> <ci> TraditionalForm </ci> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 2 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 3 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#955; </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> <ms> 1 </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#955; </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> m </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#955; </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </list> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> &#977; </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> &#977; </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["\[Lambda]_"]]], RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]_", ",", "\[Mu]_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], "\[Pi]"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", "\[Mu]", "+", "1"]], "]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Mu]", " ", "\[CurlyPhi]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Lambda]"]], ",", RowBox[List["2", "+", "\[Lambda]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "\[Lambda]"]], ",", RowBox[List["1", "+", "\[Lambda]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["2", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "\[Lambda]"]], ",", RowBox[List["1", "-", "\[Lambda]"]]]], "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ",", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Mu]"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "1"]], "]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"], ")"]], RowBox[List[FractionBox["\[Mu]", "2"], "-", "1"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Lambda]", "-", "\[Mu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Lambda]", "+", "\[Mu]"]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["\[Lambda]", ",", "\[Mu]", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.