Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ThreeJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] > Specific values > Specialized values > Fixed j1, j, m1





http://functions.wolfram.com/07.39.03.0020.01









  


  










Input Form





ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 1] + 1, Subscript[m, 1] + 1}, {Subscript[j, 3], -2 Subscript[m, 1] - 1}] == (-1)^((Subscript[j, 3] - 2 Subscript[j, 1] + Subscript[j, 2] - 4 Subscript[m, 1])/2) ((((2 Subscript[j, 1] + Subscript[j, 3])/2)! Sqrt[Subscript[j, 3] + 2 Subscript[m, 1] + 1] Sqrt[Subscript[j, 3] - 2 Subscript[m, 1]] Sqrt[2 Subscript[j, 1] + Subscript[j, 3] + 2] Sqrt[(2 Subscript[j, 1] - Subscript[j, 3] + 1)!] Sqrt[(Subscript[j, 3] + 2 Subscript[m, 1])!] Sqrt[(Subscript[j, 3] - 2 Subscript[m, 1])!])/ (2 ((2 Subscript[j, 1] - Subscript[j, 3])/2)! ((Subscript[j, 3] + 2 Subscript[m, 1])/2)! ((Subscript[j, 3] - 2 Subscript[m, 1])/2)! Sqrt[Subscript[j, 1] + Subscript[m, 1] + 2] Sqrt[Subscript[j, 1] + Subscript[m, 1] + 1] Sqrt[Subscript[j, 3]] Sqrt[Subscript[j, 3] + 1] Sqrt[(2 Subscript[j, 1] + Subscript[j, 3] + 1)!])) /; Element[(2 Subscript[j, 1] + Subscript[j, 3])/2, Integers] && \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\ \[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ][ {Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 1] + 1, Subscript[m, 1] + 1}, {Subscript[j, 3], -2 Subscript[m, 1] - 1}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["m", "1"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], SubscriptBox["m", "1"]]], "-", "1"]]]], "}"]]]], "]"]], " ", "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "-", RowBox[List["4", SubscriptBox["m", "1"]]]]], "2"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"]]], "2"], ")"]], "!"]], SqrtBox[RowBox[List[SubscriptBox["j", "3"], "+", RowBox[List["2", SubscriptBox["m", "1"]]], "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", SubscriptBox["m", "1"]]]]]], SqrtBox[RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"], "+", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", RowBox[List["2", SubscriptBox["m", "1"]]]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", SubscriptBox["m", "1"]]]]], ")"]], "!"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "3"]]], "2"], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", FractionBox[RowBox[List[SubscriptBox["j", "3"], "+", RowBox[List["2", SubscriptBox["m", "1"]]]]], "2"], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", FractionBox[RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", SubscriptBox["m", "1"]]]]], "2"], ")"]], "!"]], SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"], "+", "2"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"], "+", "1"]]], SqrtBox[SubscriptBox["j", "3"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "3"], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"]]], ")"]], "/", "2"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["m", "1"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], SubscriptBox["m", "1"]]], "-", "1"]]]], "}"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> ( </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;(&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> <mtd> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> ) </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;)&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mfrac> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mfrac> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ThreeJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </list> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> <apply> <ci> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["m_", "1"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["m_", "1"]]], "-", "1"]]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "-", RowBox[List["4", " ", SubscriptBox["mm", "1"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"]]], ")"]]]], ")"]], "!"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "3"], "+", RowBox[List["2", " ", SubscriptBox["mm", "1"]]], "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", " ", SubscriptBox["mm", "1"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"], "+", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", RowBox[List["2", " ", SubscriptBox["mm", "1"]]]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", " ", SubscriptBox["mm", "1"]]]]], ")"]], "!"]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "3"]]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", RowBox[List["2", " ", SubscriptBox["mm", "1"]]]]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "-", RowBox[List["2", " ", SubscriptBox["mm", "1"]]]]], ")"]]]], ")"]], "!"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"], "+", "2"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"], "+", "1"]]], " ", SqrtBox[SubscriptBox["j", "3"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "3"], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "3"]]], ")"]]]], "\[Element]", "Integers"]], "&&", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["mm", "1"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["mm", "1"]]], "-", "1"]]]], "}"]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.