Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ThreeJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] > Integral representations > On the real axis > Of the direct function





http://functions.wolfram.com/07.39.07.0003.01









  


  










Input Form





ThreeJSymbol[{Subscript[j, 1], 0}, {Subscript[j, 2], 0}, {Subscript[j, 3], 0}] == ((-1)^(Subscript[j, 2] - Subscript[j, 3])/ 2^(Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3] + 1)) ((Sqrt[(Subscript[j, 1] - Subscript[j, 2] + Subscript[j, 3])!] Sqrt[(Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3])!] Sqrt[(Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3] + 1)!])/ (Subscript[j, 1]! Subscript[j, 2]! Subscript[j, 3]! Sqrt[(-Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3])!])) Integrate[(1 - t^2)^Subscript[j, 2] D[(1 - t^2)^Subscript[j, 3], {t, -Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3]}], {t, -1, 1}] /; Element[Subscript[j, 1], Integers] && Subscript[j, 1] >= 0 && Element[Subscript[j, 2], Integers] && Subscript[j, 2] >= 0 && Element[Subscript[j, 3], Integers] && Subscript[j, 3] >= 0 && Abs[Subscript[j, 1] - Subscript[j, 2]] <= Subscript[j, 3] <= Subscript[j, 1] + Subscript[j, 2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", "0"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]], SuperscriptBox["2", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]]]], " ", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]]]], RowBox[List[RowBox[List[SubscriptBox["j", "1"], "!"]], " ", RowBox[List[SubscriptBox["j", "2"], "!"]], " ", RowBox[List[SubscriptBox["j", "3"], "!"]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]]]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["t", "2"]]], ")"]], SubscriptBox["j", "2"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["t", ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]]], "}"]]], RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["t", "2"]]], ")"]], SubscriptBox["j", "3"]], ")"]]]], " ", RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "1"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["j", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "2"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["j", "3"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["j", "3"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "\[LessEqual]", SubscriptBox["j", "3"], "\[LessEqual]", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> ( </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;(&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> ) </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;)&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msup> <msup> <mn> 2 </mn> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 1 </mn> </msubsup> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </msup> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> t </mi> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> &#8804; </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ThreeJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 0 </cn> </list> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> -1 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> t </ci> <degree> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </degree> </bvar> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", "0"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]]]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["t", "2"]]], ")"]], SubscriptBox["j", "2"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["t", ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]]], "}"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["t", "2"]]], ")"]], SubscriptBox["j", "3"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], RowBox[List[SuperscriptBox["2", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "!"]], " ", RowBox[List[SubscriptBox["j", "2"], "!"]], " ", RowBox[List[SubscriptBox["j", "3"], "!"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]]]], ")"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "1"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["j", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "2"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["j", "3"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["j", "3"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], "]"]], "\[LessEqual]", SubscriptBox["j", "3"], "\[LessEqual]", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.