Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ThreeJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] > Representations through more general functions > Through hypergeometric functions > Involving pFq





http://functions.wolfram.com/07.39.26.0005.01









  


  










Input Form





ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (-1)^(-Subscript[j, 1] - Subscript[m, 2] + Subscript[m, 3]) KroneckerDelta[-Subscript[m, 3], Subscript[m, 1] + Subscript[m, 2]] ((Sqrt[(Subscript[j, 1] + Subscript[j, 2] - Subscript[j, 3])!] Sqrt[(Subscript[j, 1] - Subscript[j, 2] + Subscript[j, 3])!] Sqrt[(Subscript[j, 1] - Subscript[m, 1])!] Sqrt[(Subscript[j, 3] + Subscript[m, 3])!] (Subscript[j, 2] + Subscript[j, 3] + Subscript[m, 1])!)/ (Sqrt[(-Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3])!] Sqrt[(Subscript[j, 1] + Subscript[j, 2] + Subscript[j, 3] + 1)!] Sqrt[(Subscript[j, 1] + Subscript[m, 1])!] Sqrt[(Subscript[j, 2] + Subscript[m, 2])!] Sqrt[(Subscript[j, 2] - Subscript[m, 2])!] Sqrt[(Subscript[j, 3] - Subscript[m, 3])!] (Subscript[j, 1] - Subscript[j, 2] + Subscript[m, 3])!)) HypergeometricPFQ[{Subscript[j, 1] - Subscript[j, 2] - Subscript[j, 3], Subscript[j, 1] - Subscript[m, 1] + 1, -Subscript[j, 3] + Subscript[m, 3]}, {Subscript[j, 1] - Subscript[j, 2] + Subscript[m, 3] + 1, -Subscript[j, 2] - Subscript[j, 3] - Subscript[m, 1]}, 1] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\ \[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ][ {Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["m", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["m", "2"], "+", SubscriptBox["m", "3"]]]], RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List["-", SubscriptBox["m", "3"]]], ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["m", "3"]]], ")"]], "!"]]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["m", "3"]]], ")"]], "!"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "3"]]], ")"]], "!"]]]], ")"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"], "+", "1"]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "3"]]], "+", SubscriptBox["m", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "3"], "+", "1"]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["j", "3"], "-", SubscriptBox["m", "1"]]]]], "}"]], ",", "1"]], "]"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["m", "3"]]], "}"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> ( </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;(&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> ) </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;)&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msub> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;m&quot;, &quot;3&quot;], &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;m&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;]]], &quot;-&quot;, SubscriptBox[&quot;j&quot;, &quot;3&quot;], &quot;-&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ThreeJSymbol </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["m_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["mm", "2"], "+", SubscriptBox["mm", "3"]]]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List["-", SubscriptBox["mm", "3"]]], ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "+", SubscriptBox["mm", "3"]]], ")"]], "!"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "-", SubscriptBox["j", "3"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"], "+", "1"]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "3"]]], "+", SubscriptBox["mm", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "3"], "+", "1"]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["j", "3"], "-", SubscriptBox["mm", "1"]]]]], "}"]], ",", "1"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "+", "1"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["mm", "3"]]], ")"]], "!"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "3"]]], ")"]], "!"]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "3"], ",", SubscriptBox["mm", "3"]]], "}"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-12-21





© 1998- Wolfram Research, Inc.