Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerM






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerM[nu,mu,z] > Specific values > Specialized values > For fixed z and half-integer parameters > For fixed z and nu=k/4+-n, mu=-1/4





http://functions.wolfram.com/07.44.03.0065.01









  


  










Input Form





WhittakerM[1/4 - n, -(1/4), z] == (z^(1/4) (((E^z Sqrt[Pi] Erf[Sqrt[z]])/(2 Sqrt[z])) (LaguerreL[-1 + n, -(1/2), -z] + 2 n LaguerreL[n, -(3/2), -z]) + (1/2) Sum[(1/(1 + p)) LaguerreL[-2 + n - p, 1/2 + p, -z] LaguerreL[p, -(1/2) - p, z], {p, 0, -2 + n}] + n Sum[(1/(1 + p)) LaguerreL[-1 + n - p, -(1/2) + p, -z] LaguerreL[p, -(1/2) - p, z], {p, 0, -1 + n}]))/E^(z/2) /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "n"]], ",", RowBox[List["-", FractionBox["1", "4"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], RowBox[List["2", " ", SqrtBox["z"]]]], RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], RowBox[List[FractionBox["1", RowBox[List["1", "+", "p"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "p"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]]]]]], "+", RowBox[List["n", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[FractionBox["1", RowBox[List["1", "+", "p"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n", "-", "p"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> WhittakerM </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <ci> LaguerreL </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> LaguerreL </ci> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> LaguerreL </ci> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", "n_"]], ",", RowBox[List["-", FractionBox["1", "4"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["z"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "p"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]], RowBox[List["1", "+", "p"]]]]]]], "+", RowBox[List["n", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n", "-", "p"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]], RowBox[List["1", "+", "p"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Contributed by





Brychkov Yu.A. (2006)










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.