Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerM






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerM[nu,mu,z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself





http://functions.wolfram.com/07.44.06.0006.01









  


  










Input Form





WhittakerM[\[Nu], \[Mu], z] \[Proportional] Exp[(2 \[Mu] + 1) Pi I Floor[Arg[z - x]/(2 Pi)]] (WhittakerM[\[Nu], \[Mu], x] + (1/2) (((1 + 2 \[Mu] - 2 \[Nu]) WhittakerM[-(1/2) + \[Nu], 1/2 + \[Mu], x])/((1 + 2 \[Mu]) Sqrt[x]) + ((1 + 2 \[Mu] - x) WhittakerM[\[Nu], \[Mu], x])/x) (z - x) + (1/8) ((2 (1 + 2 \[Mu] - 2 \[Nu]) WhittakerM[-(1/2) + \[Nu], 1/2 + \[Mu], x])/x^(3/2) - (2 (1 + 2 \[Mu] - 2 \[Nu]) WhittakerM[-(1/2) + \[Nu], 1/2 + \[Mu], x])/((1 + 2 \[Mu]) Sqrt[x]) + WhittakerM[\[Nu], \[Mu], x] + ((-1 + 4 \[Mu]^2) WhittakerM[\[Nu], \[Mu], x])/x^2 + (1/(2 x)) ((((1 + 2 \[Mu] - 2 \[Nu]) (3 + 2 \[Mu] - 2 \[Nu]))/ (1 + 3 \[Mu] + 2 \[Mu]^2)) WhittakerM[-1 + \[Nu], 1 + \[Mu], x] - 4 (1 + 2 \[Mu]) WhittakerM[\[Nu], \[Mu], x])) (z - x)^2 + \[Ellipsis]) /; (z -> x) && Element[x, Reals] && x < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "\[Mu]"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", "x"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SqrtBox["x"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", "x"]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]]]], "x"]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", "x"]], "]"]]]], SuperscriptBox["x", RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", "x"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SqrtBox["x"]]]], "+", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]]]], SuperscriptBox["x", "2"]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", "x"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " "]], RowBox[List["1", "+", RowBox[List["3", " ", "\[Mu]"]], "+", RowBox[List["2", " ", SuperscriptBox["\[Mu]", "2"]]]]]], RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", "x"]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]]]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "x"]], ")"]], "\[And]", RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> x </mi> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> x </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> x </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mi> x </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> x </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <pi /> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> x </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> x </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> x </ci> </apply> </apply> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> x </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> WhittakerM </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <ci> x </ci> </apply> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "1"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", "x"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SqrtBox["x"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", "x"]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]]]], "x"]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "+", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", "x"]], "]"]]]], SuperscriptBox["x", RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], ",", "x"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", SqrtBox["x"]]]], "+", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SuperscriptBox["\[Mu]", "2"]]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]]]], SuperscriptBox["x", "2"]], "+", FractionBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Mu]"]], ",", "x"]], "]"]]]], RowBox[List["1", "+", RowBox[List["3", " ", "\[Mu]"]], "+", RowBox[List["2", " ", SuperscriptBox["\[Mu]", "2"]]]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ")"]], " ", RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "x"]], "]"]]]]]], RowBox[List["2", " ", "x"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "x"]], ")"]], "&&", RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.