Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WhittakerM






Mathematica Notation

Traditional Notation









Hypergeometric Functions > WhittakerM[nu,mu,z] > Identities > Functional identities > Division on even and odd parts and generalization





http://functions.wolfram.com/07.44.17.0018.01









  


  










Input Form





WhittakerM[\[Nu], \[Mu], z] == (z^(1/2 + \[Mu]) Sum[((Pochhammer[1/2 + \[Mu] - \[Nu], k] z^k)/ (k! Pochhammer[1 + 2 \[Mu], k])) HypergeometricPFQ[ {1, (k + \[Mu] - \[Nu])/n + 1/(2 n), \[Ellipsis], (k + \[Mu] - \[Nu])/n + (n - 1)/(2 n)}, {(k + 1)/n, \[Ellipsis], (k + n)/n, (2 \[Mu] + k + 1)/n, \[Ellipsis], (2 \[Mu] + k + n)/n}, z^n/n^n], {k, 0, n - 1}])/E^(z/2)










Standard Form





Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List["WhittakerM", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "z"]], "/", "2"]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Mu]", "-", "\[Nu]"]], ",", "k"]], "]"]], SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Mu]"]]]], ",", "k"]], "]"]]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox[RowBox[List["k", "+", "\[Mu]", "-", "\[Nu]"]], "n"], "+", FractionBox["1", RowBox[List["2", " ", "n"]]]]], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List["k", "+", "\[Mu]", "-", "\[Nu]"]], "n"], "+", FractionBox[RowBox[List["n", "-", "1"]], RowBox[List["2", " ", "n"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[RowBox[List["2", "\[Mu]"]], "+", "k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[RowBox[List["2", " ", "\[Mu]"]], "+", "k", "+", "n"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List["-", "n"]]], " ", SuperscriptBox["z", "n"]]]]], "]"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> M </mi> <annotation encoding='Mathematica'> TagBox[&quot;M&quot;, WhittakerM] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> n </mi> <mtext> </mtext> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mi> n </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mi> n </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;n&quot;, &quot; &quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, &quot;n&quot;]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;n&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;n&quot;], &quot;+&quot;, FractionBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;n&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, RowBox[List[TagBox[FractionBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Mu]&quot;]], &quot;+&quot;, &quot;n&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;n&quot;, RowBox[List[&quot;-&quot;, &quot;n&quot;]]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;n&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> WhittakerM </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> k </ci> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.