Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BernoulliB






Mathematica Notation

Traditional Notation









Integer Functions > BernoulliB[n] > Identities > Identities involving determinants





http://functions.wolfram.com/04.13.17.0004.01









  


  










Input Form





Det[Table[BernoulliB[k + l + 2], {k, 0, n}, {l, 0, n}]] == (1/6) (-1)^Binomial[n + 1, 2] Product[(k! (k + 1)!^4 (k + 2)!)/ ((2 k + 2)! (2 k + 3)!), {k, 1, n}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Det", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["k", "+", "l", "+", "2"]], "]"]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "n"]], "}"]], ",", RowBox[List["{", RowBox[List["l", ",", "0", ",", "n"]], "}"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "2"]], "]"]]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["k", "!"]], " ", SuperscriptBox[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], "4"], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "2"]], ")"]], "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "3"]], ")"]], "!"]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mo> &#10072; </mo> <msub> <mrow> <mo> ( </mo> <msub> <mi> B </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> l </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> ) </mo> </mrow> <mtable> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> &#8804; </mo> <mi> l </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mtd> </mtr> </mtable> </msub> <mo> &#10072; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftBracketingBar]&quot;, SubscriptBox[RowBox[List[&quot;(&quot;, SubscriptBox[TagBox[&quot;B&quot;, BernoulliB], RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;l&quot;, &quot;+&quot;, &quot;2&quot;]]], &quot;)&quot;]], GridBox[List[List[RowBox[List[&quot;0&quot;, &quot;\[LessEqual]&quot;, &quot;k&quot;, &quot;\[LessEqual]&quot;, &quot;n&quot;]]], List[RowBox[List[&quot;0&quot;, &quot;\[LessEqual]&quot;, &quot;l&quot;, &quot;\[LessEqual]&quot;, &quot;n&quot;]]]]]], &quot;\[RightBracketingBar]&quot;]], List[Det]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 2 </mn> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;2&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <determinant /> <apply> <ci> Subscript </ci> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> k </ci> <ci> l </ci> <cn type='integer'> 2 </cn> </apply> </apply> <list> <list> <apply> <leq /> <cn type='integer'> 0 </cn> <ci> k </ci> <ci> n </ci> </apply> </list> <list> <apply> <leq /> <cn type='integer'> 0 </cn> <ci> l </ci> <ci> n </ci> </apply> </list> </list> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Det", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["k_", "+", "l_", "+", "2"]], "]"]], ",", RowBox[List["{", RowBox[List["k_", ",", "0", ",", "n_"]], "}"]], ",", RowBox[List["{", RowBox[List["l_", ",", "0", ",", "n_"]], "}"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "2"]], "]"]]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["k", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], ")"]], "4"], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "2"]], ")"]], "!"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "3"]], ")"]], "!"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.