Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BernoulliB






Mathematica Notation

Traditional Notation









Integer Functions > BernoulliB[n] > Summation > Finite summation





http://functions.wolfram.com/04.13.23.0012.01









  


  










Input Form





Sum[j^(-k + n + 1 (k + n + 1)) Binomial[n + 1, k] BernoulliB[k + n], {k, 0, n + 1}] == (n + 1) Sum[((2 n + 1) k - (n + 1) j) k^n (k - j)^(n - 1), {k, 1, j - 1}] /; Element[j, Integers] && j >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "+", "1"]]], RowBox[List[SuperscriptBox["j", RowBox[List[RowBox[List["-", "k"]], "+", "n", "+", RowBox[List["1", RowBox[List["(", RowBox[List["k", "+", "n", "+", "1"]], ")"]]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["k", "+", "n"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["j", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", "k"]], "-", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", "j"]]]], ")"]], " ", SuperscriptBox["k", "n"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], RowBox[List["n", "-", "1"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["j", ",", "Integers"]], "]"]], "\[And]", RowBox[List["j", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mi> j </mi> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> </msub> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> k </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> j </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> j </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <ci> k </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> j </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], RowBox[List["n_", "+", "1"]]], RowBox[List[SuperscriptBox["j_", RowBox[List[RowBox[List["-", "k_"]], "+", "n_", "+", RowBox[List["1", " ", RowBox[List["(", RowBox[List["k_", "+", "n_", "+", "1"]], ")"]]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n_", "+", "1"]], ",", "k_"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["k_", "+", "n_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["j", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", "k"]], "-", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], " ", "j"]]]], ")"]], " ", SuperscriptBox["k", "n"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], RowBox[List["n", "-", "1"]]]]]]]]], "/;", RowBox[List[RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.