Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Integer Functions > Fibonacci[nu] > Differentiation > Symbolic differentiation





http://functions.wolfram.com/04.11.20.0004.02









  


  










Input Form





D[Fibonacci[\[Nu]], {\[Nu], n}] == Fibonacci[\[Nu]] Log[GoldenRatio]^n + ((1/Sqrt[5]) (Cos[Pi \[Nu]] Log[GoldenRatio]^n - (-1)^n Sum[Binomial[n, k] Pi^k Cos[(Pi/2) (k - 2 \[Nu])] Log[GoldenRatio]^(n - k), {k, 0, n}]))/GoldenRatio^\[Nu] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "n"]], "}"]]], RowBox[List["Fibonacci", "[", "\[Nu]", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", "\[Nu]", "]"]], SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], "n"]]], "+", RowBox[List[FractionBox["1", SqrtBox["5"]], SuperscriptBox["GoldenRatio", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], "n"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], SuperscriptBox["\[Pi]", "k"], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]], SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], RowBox[List["n", "-", "k"]]]]]]]]]]], ")"]]]]]]]], "/;", " ", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[GoldenRatio]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[GoldenRatio]] </annotation> </semantics> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <msqrt> <mn> 5 </mn> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[GoldenRatio]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ( </mo> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[GoldenRatio]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Fibonacci </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <ln /> <ci> GoldenRatio </ci> </apply> <ci> n </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> GoldenRatio </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> GoldenRatio </ci> </apply> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <pi /> <ci> k </ci> </apply> <apply> <cos /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> GoldenRatio </ci> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "n_"]], "}"]]]]], RowBox[List["Fibonacci", "[", "\[Nu]_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Fibonacci", "[", "\[Nu]", "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], "n"]]], "+", FractionBox[RowBox[List[SuperscriptBox["GoldenRatio", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], "n"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox["\[Pi]", "k"], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "GoldenRatio", "]"]], RowBox[List["n", "-", "k"]]]]]]]]]]], ")"]]]], SqrtBox["5"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.