Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Integer Functions > Fibonacci[nu] > Summation > Multiple sums





http://functions.wolfram.com/04.11.23.0009.01









  


  










Input Form





Sum[KroneckerDelta[n - Sum[Subscript[k, j], {j, 1, p}]]*Product[Fibonacci[Subscript[k, j]], {j, 1, p}], {Subscript[k, 1], 1, n}, {Subscript[k, 2], 1, n}, …, {Subscript[k, p], 1, n}] == Subscript[F, n, p] /; (n ∈ Integers && n >= 0 && p ∈ Integers && p >= 1 && Subscript[F, n, p] = (1/5)*(n/(p - 1) - 1)*Subscript[F, n, p - 1] + (2/5)*((n - 1)/(p - 1) + 1)*Subscript[F, n - 1, p - 1] && Subscript[F, n, 1] == Fibonacci[n])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "1"]], "n"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "p"], "=", "1"]], "n"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Fibonacci", "[", SubscriptBox["k", "j"], "]"]]]]]]]]]]]]]], "\[Equal]", SubscriptBox["F", RowBox[List["n", ",", "p"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "1"]], "\[And]", SubscriptBox["F", RowBox[List["n", ",", "p"]]]]]]], " ", "=", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "5"], RowBox[List["(", RowBox[List[FractionBox["n", RowBox[List["p", "-", "1"]]], "-", "1"]], ")"]], SubscriptBox["F", RowBox[List["n", ",", RowBox[List["p", "-", "1"]]]]]]], "+", RowBox[List[FractionBox["2", "5"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["n", "-", "1"]], RowBox[List["p", "-", "1"]]], "+", "1"]], ")"]], SubscriptBox["F", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List["p", "-", "1"]]]]]]]]], "\[And]", "\[IndentingNewLine]", RowBox[List[SubscriptBox["F", RowBox[List["n", ",", "1"]]], "\[Equal]", RowBox[List["Fibonacci", "[", "n", "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mo> &#8230; </mo> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mi> p </mi> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </msub> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <msub> <mi> k </mi> <mi> j </mi> </msub> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <msub> <mi> F </mi> <mrow> <mi> n </mi> <mo> , </mo> <mi> p </mi> </mrow> </msub> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <msub> <mi> F </mi> <mrow> <mi> n </mi> <mo> , </mo> <mi> p </mi> </mrow> </msub> </mrow> </mrow> <mo> = </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mn> 5 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> F </mi> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 5 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> n </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> F </mi> <mrow> <mi> n </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> F </mi> <mrow> <mi> n </mi> <mo> , </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Set </ci> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <ci> &#8230; </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> p </ci> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <ci> Fibonacci </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> <ci> p </ci> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> <ci> p </ci> </apply> </apply> </apply> <apply> <and /> <apply> <plus /> <apply> <times /> <cn type='rational'> 2 <sep /> 5 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> F </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 5 </cn> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Fibonacci </ci> <ci> n </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "1"]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "p"], "=", "1"]], "n"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Fibonacci", "[", SubscriptBox["k", "j"], "]"]]]]]]]]]]]]]], "\[Equal]", SubscriptBox["F", RowBox[List["n", ",", "p"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "1"]], "&&", SubscriptBox["F", RowBox[List["n", ",", "p"]]]]]]], "=", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "5"], " ", RowBox[List["(", RowBox[List[FractionBox["n", RowBox[List["p", "-", "1"]]], "-", "1"]], ")"]], " ", SubscriptBox["F", RowBox[List["n", ",", RowBox[List["p", "-", "1"]]]]]]], "+", RowBox[List[FractionBox["2", "5"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["n", "-", "1"]], RowBox[List["p", "-", "1"]]], "+", "1"]], ")"]], " ", SubscriptBox["F", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List["p", "-", "1"]]]]]]]]], "&&", RowBox[List[SubscriptBox["F", RowBox[List["n", ",", "1"]]], "\[Equal]", RowBox[List["Fibonacci", "[", "n", "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.