Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Mod






Mathematica Notation

Traditional Notation









Integer Functions > Mod[m,n] > Integration > Definite integration > For the direct function with respect to n





http://functions.wolfram.com/04.06.21.0013.01









  


  










Input Form





Integrate[t^(\[Alpha] - 1) Mod[m, t], {t, 0, a}] == (a^\[Alpha] m + a^\[Alpha] \[Alpha] Mod[m, a] - m^(1 + \[Alpha]) \[Alpha] Zeta[1 + \[Alpha], (a + m - Mod[m, a])/a])/(\[Alpha] + \[Alpha]^2) /; Re[\[Alpha]] > -1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "a"], RowBox[List[RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["Mod", "[", RowBox[List["m", ",", "t"]], "]"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["a", "\[Alpha]"], " ", "m"]], "+", RowBox[List[SuperscriptBox["a", "\[Alpha]"], " ", "\[Alpha]", " ", RowBox[List["Mod", "[", RowBox[List["m", ",", "a"]], "]"]]]], "-", RowBox[List[SuperscriptBox["m", RowBox[List["1", "+", "\[Alpha]"]]], " ", "\[Alpha]", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "\[Alpha]"]], ",", FractionBox[RowBox[List["a", "+", "m", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "a"]], "]"]]]], "a"]]], "]"]]]]]], RowBox[List["\[Alpha]", "+", SuperscriptBox["\[Alpha]", "2"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", RowBox[List["-", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> a </mi> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <ci> $CellContext`t </ci> </apply> </annotation-xml> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> &#945; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <mi> &#945; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <ci> $CellContext`a </ci> </apply> </annotation-xml> </semantics> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mi> &#945; </mi> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> m </mi> <mrow> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> &#945; </mi> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;\[Alpha]&quot;, &quot;+&quot;, &quot;1&quot;]], Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;m&quot;, &quot;-&quot;, InterpretationBox[RowBox[List[&quot;m&quot;, &quot; &quot;, &quot;mod&quot;, &quot; &quot;, &quot;a&quot;]], Mod[$CellContext`m, $CellContext`a]]]], &quot;a&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`x, $CellContext`y], Zeta[$CellContext`x, $CellContext`y]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> a </ci> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <rem /> <ci> $CellContext`m </ci> <ci> $CellContext`t </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> a </ci> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <ci> &#945; </ci> <apply> <rem /> <ci> $CellContext`m </ci> <ci> $CellContext`a </ci> </apply> <apply> <power /> <ci> a </ci> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> m </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <ci> &#945; </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <ci> $CellContext`a </ci> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "a_"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Mod", "[", RowBox[List["m_", ",", "t_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["a", "\[Alpha]"], " ", "m"]], "+", RowBox[List[SuperscriptBox["a", "\[Alpha]"], " ", "\[Alpha]", " ", RowBox[List["Mod", "[", RowBox[List["m", ",", "a"]], "]"]]]], "-", RowBox[List[SuperscriptBox["m", RowBox[List["1", "+", "\[Alpha]"]]], " ", "\[Alpha]", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "\[Alpha]"]], ",", FractionBox[RowBox[List["a", "+", "m", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "a"]], "]"]]]], "a"]]], "]"]]]]]], RowBox[List["\[Alpha]", "+", SuperscriptBox["\[Alpha]", "2"]]]], "/;", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], ">", RowBox[List["-", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29