Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











MathieuC






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > MathieuC[a,q,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/11.01.13.0007.01









  


  










Input Form





Derivative[2][w][z] + ((1 - r - 2 s) Derivative[1][w][z])/z + (b^2 r^2 z^(-2 + 2 r) (a - 2 q Cos[2 b z^r]) + (s (r + s))/z^2) w[z] == 0 /; w[z] == Subscript[c, 1] z^s MathieuC[a, q, b z^r] + Subscript[c, 2] z^s MathieuS[a, q, b z^r]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "r", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "1"]]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "r"]]]]], " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["2", " ", "q", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b", " ", SuperscriptBox["z", "r"]]], "]"]]]]]], ")"]]]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List["r", "+", "s"]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "2"]]]]]]], ")"]], RowBox[List["w", "[", "z", "]"]]]]]], " ", "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["z", "s"], " ", RowBox[List["MathieuC", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["z", "s"], " ", RowBox[List["MathieuS", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> s </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> Ce </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> Se </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <ci> s </ci> <apply> <plus /> <ci> r </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> Ce </ci> <ci> a </ci> <ci> q </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> Se </ci> <ci> a </ci> <ci> q </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "r_", "-", RowBox[List["2", " ", "s_"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "z_"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b_", "2"], " ", SuperscriptBox["r_", "2"], " ", SuperscriptBox["z_", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "r_"]]]]], " ", RowBox[List["(", RowBox[List["a_", "-", RowBox[List["2", " ", "q_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b_", " ", SuperscriptBox["z_", "r_"]]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List["s_", " ", RowBox[List["(", RowBox[List["r_", "+", "s_"]], ")"]]]], SuperscriptBox["z_", "2"]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["MathieuC", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["MathieuS", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.