Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

[an error occurred while processing this directive]
View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SpheroidalQSPrime






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > SpheroidalQSPrime[nu,mu,gamma,z] > Primary definition





http://functions.wolfram.com/11.13.02.0001.01









  


  










Input Form





SpheroidalQSPrime[\[Nu], \[Mu], \[Gamma], z] == D[SpheroidalQS[\[Nu], \[Mu], \[Gamma], z], z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SubscriptBox["\[PartialD]", "z"], RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <msup> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;\[Prime]&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;z&quot;, SpheroidalQSPrime, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQSPrime[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#63449; </mo> <mfrac> <mrow> <mo> &#8706; </mo> <semantics> <mrow> <msub> <mi> QS </mi> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox[StyleBox[&quot;QS&quot;, &quot;IT&quot;], RowBox[List[TagBox[&quot;\[Nu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Mu]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;(&quot;, RowBox[List[TagBox[&quot;\[Gamma]&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;z&quot;, SpheroidalQS, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[SpheroidalQS[SlotSequence[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SpheroidalQSPrime </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> SpheroidalQS </ci> <ci> &#957; </ci> <ci> &#956; </ci> <ci> &#947; </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SpheroidalQSPrime", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "\[Gamma]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["z"]]], RowBox[List["SpheroidalQS", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "\[Gamma]", ",", "z"]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.