Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











DivisorSigma






Mathematica Notation

Traditional Notation









Number Theory Functions > DivisorSigma[k,n] > Summation > Asymptotic infinite summation





http://functions.wolfram.com/13.05.23.0019.01









  


  










Input Form





Sum[UnitStep[DivisorSigma[1, n] - m], {n, 1, Infinity}] \[Proportional] c m + o[m] /; (Element[m, Reals] && m > 0 && c = Product[(1 - 1/Prime[j]) Sum[(Prime[j] - 1)/(Prime[j]^(k + 1) - 1), {k, 1, Infinity}], {j, 1, Infinity}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", "n"]], "]"]], "-", "m"]], "]"]]]], "\[Proportional]", RowBox[List[RowBox[List["c", " ", "m"]], "+", RowBox[List["o", "[", "m", "]"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", "c"]], "=", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox["1", RowBox[List["Prime", "[", "j", "]"]]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Prime", "[", "j", "]"]], "-", "1"]], RowBox[List[SuperscriptBox[RowBox[List["Prime", "[", "j", "]"]], RowBox[List["k", "+", "1"]]], "-", "1"]]]]]]]]]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> &#963; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Sigma]&quot;, DivisorSigma] </annotation> </semantics> <mn> 1 </mn> </msub> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> o </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> = </mo> <mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mi> j </mi> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <msub> <mi> p </mi> <mi> j </mi> </msub> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> &#8712; </mo> <mi> &#8473; </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <ci> DivisorSigma </ci> <cn type='integer'> 1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> <apply> <ci> o </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <reals /> </apply> <apply> <gt /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Set </ci> <ci> c </ci> <apply> <and /> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> &#8473; </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "1"]], "\[Infinity]"], RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["DivisorSigma", "[", RowBox[List["1", ",", "n_"]], "]"]], "-", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["c", " ", "m"]], "+", RowBox[List["o", "[", "m", "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "0"]], "&&", "c"]], "=", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox["1", RowBox[List["Prime", "[", "j", "]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Prime", "[", "j", "]"]], "-", "1"]], RowBox[List[SuperscriptBox[RowBox[List["Prime", "[", "j", "]"]], RowBox[List["k", "+", "1"]]], "-", "1"]]]]]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02