Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











DivisorSigma






Mathematica Notation

Traditional Notation









Number Theory Functions > DivisorSigma[k,n] > Inequalities





http://functions.wolfram.com/13.05.29.0025.01









  


  










Input Form





Inequality[n^k Product[(1/Subscript[p, j]^k) ((Subscript[p, j]^(2 k) - 1)/ (Subscript[p, j]^k - 1)), {j, 1, m}], LessEqual, DivisorSigma[k, n], Less, n^k Product[Subscript[p, j]^k/(Subscript[p, j]^k - 1), {j, 1, m}]] /; Element[k, Integers] && k >= 1 && n == Product[Subscript[p, k]^Subscript[n, k], {k, 1, m}] && Element[Subscript[p, k], Primes] && Element[Subscript[n, k], Integers] && Subscript[n, k] > 0 && Subscript[p, k] < Subscript[p, k + 1] && 1 <= k <= m - 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["n", "k"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], RowBox[List[FractionBox["1", SubsuperscriptBox["p", "j", "k"]], FractionBox[RowBox[List[SubsuperscriptBox["p", "j", RowBox[List["2", "k"]]], "-", "1"]], RowBox[List[SubsuperscriptBox["p", "j", "k"], "-", "1"]]]]]]]]], "\[LessEqual]", RowBox[List["DivisorSigma", "[", RowBox[List["k", ",", "n"]], "]"]], "<", RowBox[List[SuperscriptBox["n", "k"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], FractionBox[SubsuperscriptBox["p", "j", "k"], RowBox[List[SubsuperscriptBox["p", "j", "k"], "-", "1"]]]]]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "1"]], "\[And]", RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], SubsuperscriptBox["p", "k", SubscriptBox["n", "k"]]]]]], "\[And]", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "k"], ">", "0"]], "\[And]", RowBox[List[SubscriptBox["p", "k"], "<", SubscriptBox["p", RowBox[List["k", "+", "1"]]]]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", RowBox[List["m", "-", "1"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> n </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mfrac> <mrow> <msubsup> <mi> p </mi> <mi> j </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msubsup> <mi> p </mi> <mi> j </mi> <mi> k </mi> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> p </mi> <mi> j </mi> <mi> k </mi> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> &#8804; </mo> <mrow> <msub> <semantics> <mi> &#963; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Sigma]&quot;, DivisorSigma] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mrow> <msup> <mi> n </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mfrac> <msubsup> <mi> p </mi> <mi> j </mi> <mi> k </mi> </msubsup> <mrow> <msubsup> <mi> p </mi> <mi> j </mi> <mi> k </mi> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <msubsup> <mi> p </mi> <mi> k </mi> <msub> <mi> n </mi> <mi> k </mi> </msub> </msubsup> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> &#8712; </mo> <semantics> <mi> &#8473; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalP]&quot;, Function[Primes]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> n </mi> <mi> k </mi> </msub> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> &lt; </mo> <msub> <mi> p </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Inequality </ci> <apply> <times /> <apply> <power /> <ci> n </ci> <ci> k </ci> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <leq /> <apply> <ci> DivisorSigma </ci> <ci> k </ci> <ci> n </ci> </apply> <lt /> <apply> <times /> <apply> <power /> <ci> n </ci> <ci> k </ci> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> k </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <eq /> <ci> n </ci> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <primes /> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <lt /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> k </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["n", "k"], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], FractionBox[RowBox[List[SubsuperscriptBox["p", "j", RowBox[List["2", " ", "k"]]], "-", "1"]], RowBox[List[SubsuperscriptBox["p", "j", "k"], " ", RowBox[List["(", RowBox[List[SubsuperscriptBox["p", "j", "k"], "-", "1"]], ")"]]]]]]]]], "\[LessEqual]", RowBox[List["DivisorSigma", "[", RowBox[List["k", ",", "n"]], "]"]], "<", RowBox[List[SuperscriptBox["n", "k"], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], FractionBox[SubsuperscriptBox["p", "j", "k"], RowBox[List[SubsuperscriptBox["p", "j", "k"], "-", "1"]]]]]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "1"]], "&&", RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], SubsuperscriptBox["p", "k", SubscriptBox["n", "k"]]]]]], "&&", RowBox[List[SubscriptBox["p", "k"], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["n", "k"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "k"], ">", "0"]], "&&", RowBox[List[SubscriptBox["p", "k"], "<", SubscriptBox["p", RowBox[List["k", "+", "1"]]]]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", RowBox[List["m", "-", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.