Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











FactorInteger






Mathematica Notation

Traditional Notation









Number Theory Functions > FactorInteger[n] > Summation > Asymptotic finite summation





http://functions.wolfram.com/13.01.23.0001.01









  


  










Input Form





Sum[Subscript[p, 1][k], {k, 2, n}] \[Proportional] (1/2) (n^2/Log[n]) + O[n^2/Log[n]^2] /; n == Product[Subscript[p, j][k]^Subscript[n, j], {j, 1, m}] && Element[Subscript[p, j][k], Primes] && Element[Subscript[n, j], Integers] && Subscript[n, j] > 0 && Subscript[p, j][k] < Subscript[p, j + 1][k] && 1 <= j <= m - 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "n"], RowBox[List[SubscriptBox["p", "1"], "[", "k", "]"]]]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox["1", "2"], FractionBox[SuperscriptBox["n", "2"], RowBox[List["Log", "[", "n", "]"]]]]], "+", RowBox[List["O", "[", FractionBox[SuperscriptBox["n", "2"], SuperscriptBox[RowBox[List["Log", "[", "n", "]"]], "2"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], SuperscriptBox[RowBox[List[SubscriptBox["p", "j"], "[", "k", "]"]], SubscriptBox["n", "j"]]]]]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["p", "j"], "[", "k", "]"]], "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["n", "j"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "j"], ">", "0"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["p", "j"], "[", "k", "]"]], "<", RowBox[List[SubscriptBox["p", RowBox[List["j", "+", "1"]]], "[", "k", "]"]]]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", RowBox[List["m", "-", "1"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msub> <mi> p </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <msup> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <msub> <mi> n </mi> <mi> j </mi> </msub> </msup> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8473; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalP]&quot;, Function[List[], Primes]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> n </mi> <mi> j </mi> </msub> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> n </mi> <mi> j </mi> </msub> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <apply> <ci> Subscript </ci> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ln /> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> n </ci> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <power /> <apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <primes /> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> j </ci> </apply> <integers /> </apply> <apply> <gt /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> j </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <ci> k </ci> </apply> <apply> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> j </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "n_"], RowBox[List[SubscriptBox["p", "1"], "[", "k", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["n", "2"], RowBox[List["2", " ", RowBox[List["Log", "[", "n", "]"]]]]], "+", RowBox[List["O", "[", FractionBox[SuperscriptBox["n", "2"], SuperscriptBox[RowBox[List["Log", "[", "n", "]"]], "2"]], "]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], SuperscriptBox[RowBox[List[SubscriptBox["p", "j"], "[", "k", "]"]], SubscriptBox["n", "j"]]]]]], "&&", RowBox[List[RowBox[List[SubscriptBox["p", "j"], "[", "k", "]"]], "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["n", "j"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "j"], ">", "0"]], "&&", RowBox[List[RowBox[List[SubscriptBox["p", "j"], "[", "k", "]"]], "<", RowBox[List[SubscriptBox["p", RowBox[List["j", "+", "1"]]], "[", "k", "]"]]]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", RowBox[List["m", "-", "1"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.