Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











MoebiusMu






Mathematica Notation

Traditional Notation









Number Theory Functions > MoebiusMu[n] > Specific values > Specialized values





http://functions.wolfram.com/13.07.03.0003.01









  


  










Input Form





MoebiusMu[n] == (-1)^m (1 - KroneckerDelta[0, s]) /; s == Product[n/j^2 - Floor[n/j^2], {j, 2, Floor[Sqrt[n]]}] && m == Sum[KroneckerDelta[n/Prime[j] - Floor[n/Prime[j]], 0], {j, 1, n}] && Subscript[p, j] == Prime[j]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MoebiusMu", "[", "n", "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["0", ",", "s"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["s", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "2"]], RowBox[List["Floor", "[", SqrtBox["n"], "]"]]], RowBox[List["(", RowBox[List[FractionBox["n", SuperscriptBox["j", "2"]], "-", RowBox[List["Floor", "[", FractionBox["n", SuperscriptBox["j", "2"]], "]"]]]], ")"]]]]]], "\[And]", RowBox[List["m", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "n"], RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[FractionBox["n", RowBox[List["Prime", "[", "j", "]"]]], "-", RowBox[List["Floor", "[", FractionBox["n", RowBox[List["Prime", "[", "j", "]"]]], "]"]]]], ",", "0"]], "]"]]]]]], "\[And]", RowBox[List[SubscriptBox["p", "j"], "\[Equal]", RowBox[List["Prime", "[", "j", "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> &#956; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Mu]&quot;, MoebiusMu] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> s </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> s </mi> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mrow> <mo> &#8970; </mo> <msqrt> <mi> n </mi> </msqrt> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> n </mi> <msup> <mi> j </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <msup> <mi> j </mi> <mn> 2 </mn> </msup> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mrow> <mfrac> <mi> n </mi> <msub> <mi> p </mi> <mi> j </mi> </msub> </mfrac> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <msub> <mi> p </mi> <mi> j </mi> </msub> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mi> j </mi> </msub> <mo> &#10869; </mo> <mrow> <mi> prime </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> j </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> MoebiusMu </ci> <ci> n </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> KroneckerDelta </ci> <ci> s </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> s </ci> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </uplimit> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <power /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <power /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> m </ci> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> </apply> <apply> <ci> prime </ci> <ci> j </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MoebiusMu", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["0", ",", "s"]], "]"]]]], ")"]]]], "/;", RowBox[List[RowBox[List["s", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "2"]], RowBox[List["Floor", "[", SqrtBox["n"], "]"]]], RowBox[List["(", RowBox[List[FractionBox["n", SuperscriptBox["j", "2"]], "-", RowBox[List["Floor", "[", FractionBox["n", SuperscriptBox["j", "2"]], "]"]]]], ")"]]]]]], "&&", RowBox[List["m", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "n"], RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[FractionBox["n", RowBox[List["Prime", "[", "j", "]"]]], "-", RowBox[List["Floor", "[", FractionBox["n", RowBox[List["Prime", "[", "j", "]"]]], "]"]]]], ",", "0"]], "]"]]]]]], "&&", RowBox[List[SubscriptBox["p", "j"], "\[Equal]", RowBox[List["Prime", "[", "j", "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.