Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BernoulliB






Mathematica Notation

Traditional Notation









Polynomials > BernoulliB[n,z] > Integral representations > On the real axis > Of the direct function





http://functions.wolfram.com/05.14.07.0001.01









  


  










Input Form





BernoulliB[n, z] == (-1)^Floor[(n - 1)/2] n Integrate[(t^(n - 1)/(Cosh[2 Pi t] - Cos[2 Pi z])) ((-1)^Floor[n/2] Cos[2 Pi z + (n Pi)/2] - (2 Floor[n/2] - n + 1)/ E^(2 Pi t)), {t, 0, Infinity}] /; 0 < Re[z] < 1 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], " ", "n", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", SuperscriptBox["t", RowBox[List["n", "-", "1"]]]]], RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", "\[Pi]", " ", "t"]], "]"]], "-", RowBox[List["Cos", "[", RowBox[List["2", " ", "\[Pi]", " ", "z"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", "z"]], "+", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]], "-", "n", "+", "1"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", "t"]]]]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", RowBox[List["Re", "[", "z", "]"]], "<", "1"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mfrac> <mrow> <mtext> </mtext> <msup> <mi> t </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BernoulliB </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> n </ci> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> t </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <pi /> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BernoulliB", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], " ", "n", " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["t", RowBox[List["n", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", "z"]], "+", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]], "-", "n", "+", "1"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", "t"]]]]]]], ")"]]]], RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", "\[Pi]", " ", "t"]], "]"]], "-", RowBox[List["Cos", "[", RowBox[List["2", " ", "\[Pi]", " ", "z"]], "]"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", RowBox[List["Re", "[", "z", "]"]], "<", "1"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.