Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ChebyshevT






Mathematica Notation

Traditional Notation









Polynomials > ChebyshevT[n,z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving power function





http://functions.wolfram.com/05.04.21.0004.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) ChebyshevT[n, z], z] == (KroneckerDelta[n, 0] z^(1 + \[Alpha]))/(2 (\[Alpha] + 1)) + (n/2) Sum[((-1)^k (n - k - 1)! 2^(n - 2 k) z^(n - 2 k + \[Alpha]))/ (k! (n - 2 k)! (\[Alpha] - 2 k + n)), {k, 1, Floor[n/2]}] + (2^(n - 1) z^(1 + n + \[Alpha]))/((1 + n) (1 + n + \[Alpha]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "0"]], "]"]], SuperscriptBox["z", RowBox[List["1", "+", "\[Alpha]"]]]]], RowBox[List["2", RowBox[List["(", RowBox[List["\[Alpha]", "+", "1"]], ")"]]]]], "+", RowBox[List[FractionBox["n", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox["2", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["z", RowBox[List["n", "-", RowBox[List["2", "k"]], "+", "\[Alpha]"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], RowBox[List["(", RowBox[List["\[Alpha]", "-", RowBox[List["2", " ", "k"]], "+", "n"]], ")"]]]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "n", "+", "\[Alpha]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "n", "+", "\[Alpha]"]], ")"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> T </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ChebyshevT </ci> <ci> n </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> &#945; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <ci> &#945; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <ci> &#945; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["ChebyshevT", "[", RowBox[List["n_", ",", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "0"]], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "+", "\[Alpha]"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Alpha]", "+", "1"]], ")"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "n", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox["2", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["z", RowBox[List["n", "-", RowBox[List["2", " ", "k"]], "+", "\[Alpha]"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List["\[Alpha]", "-", RowBox[List["2", " ", "k"]], "+", "n"]], ")"]]]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "1"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "n", "+", "\[Alpha]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "n", "+", "\[Alpha]"]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.