Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ChebyshevU






Mathematica Notation

Traditional Notation









Polynomials > ChebyshevU[n,z] > Series representations > Generalized power series > Expansions at generic point z==z0 > For the function itself





http://functions.wolfram.com/05.05.06.0019.01









  


  










Input Form





ChebyshevU[n, z] \[Proportional] ChebyshevU[n, Subscript[z, 0]] + (((1 + n) ChebyshevT[1 + n, Subscript[z, 0]] - Subscript[z, 0] ChebyshevU[n, Subscript[z, 0]])/(Subscript[z, 0]^2 - 1)) (z - Subscript[z, 0]) + (1/(2 (Subscript[z, 0]^2 - 1)^2)) (-3 (1 + n) Subscript[z, 0] ChebyshevT[1 + n, Subscript[z, 0]] + (3 Subscript[z, 0]^2 + 2 n (-1 + Subscript[z, 0]^2) + n^2 (-1 + Subscript[z, 0]^2)) ChebyshevU[n, Subscript[z, 0]]) (z - Subscript[z, 0])^2 + O[(z - Subscript[z, 0])^3]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", SubscriptBox["z", "0"]]], "]"]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "-", RowBox[List[SubscriptBox["z", "0"], " ", RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", SubscriptBox["z", "0"]]], "]"]], " "]]]], RowBox[List[SubsuperscriptBox["z", "0", "2"], "-", "1"]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["z", "0", "2"], "-", "1"]], ")"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", SubscriptBox["z", "0"], " ", RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubsuperscriptBox["z", "0", "2"]]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["z", "0", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["n", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["z", "0", "2"]]], ")"]]]]]], ")"]], " ", RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", SubscriptBox["z", "0"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> U </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msub> <mi> U </mi> <mi> n </mi> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> T </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mi> n </mi> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> U </mi> <mi> n </mi> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msub> <mi> T </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> ChebyshevU </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> ChebyshevU </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> ChebyshevU </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> ChebyshevU </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ChebyshevU", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", SubscriptBox["zz", "0"]]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], "-", RowBox[List[SubscriptBox["zz", "0"], " ", RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", SubscriptBox["zz", "0"]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], RowBox[List[SubsuperscriptBox["zz", "0", "2"], "-", "1"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", SubscriptBox["zz", "0"], " ", RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubsuperscriptBox["zz", "0", "2"]]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["zz", "0", "2"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["n", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubsuperscriptBox["zz", "0", "2"]]], ")"]]]]]], ")"]], " ", RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", SubscriptBox["zz", "0"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["zz", "0", "2"], "-", "1"]], ")"]], "2"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], "3"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.