html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 ChebyshevU

 http://functions.wolfram.com/05.05.06.0027.01

 Input Form

 ChebyshevU[n, z] == Cos[(Pi n)/2 - (1 + n) ArcSin[z]]/Sqrt[1 - z^2]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["ChebyshevU", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["ArcSin", "[", "z", "]"]]]]]], "]"]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]

 MathML Form

 U n ( z ) 1 1 - z 2 cos ( π n 2 - ( n + 1 ) sin - 1 ( z ) ) ChebyshevU n z 1 1 -1 z 2 1 2 -1 n 2 -1 -1 n 1 z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ChebyshevU", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "n"]], "2"], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["ArcSin", "[", "z", "]"]]]]]], "]"]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02