Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Fibonacci






Mathematica Notation

Traditional Notation









Polynomials > Fibonacci[n,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/05.12.13.0010.01









  


  










Input Form





Wronskian[s^z Fibonacci[n, a r^z], (s^z/(4 + a^2 r^(2 z))^(1/4)) LegendreP[-(1/2) + n, 1/2, 2, (I a r^z)/2], z] == -((a (3 + E^(2 I Pi n)) r^z s^(2 z) n Log[r])/ (E^((1/2) I Pi n) (Sqrt[Pi] (4 + a^2 r^(2 z))^(3/2))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["s", "z"], RowBox[List["Fibonacci", "[", RowBox[List["n", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], ",", " ", RowBox[List[FractionBox[SuperscriptBox["s", "z"], SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List[SuperscriptBox["a", "2"], SuperscriptBox["r", RowBox[List["2", "z"]]]]]]], ")"]], RowBox[List["1", "/", "4"]]]], RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n"]], ",", FractionBox["1", "2"], ",", "2", ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["r", "z"]]], "2"]]], "]"]]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]]], " ", RowBox[List["(", RowBox[List["3", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]]]]], ")"]], " ", SuperscriptBox["r", "z"], " ", SuperscriptBox["s", RowBox[List["2", " ", "z"]]], " ", "n", " ", RowBox[List["Log", "[", "r", "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> F </mi> <annotation encoding='Mathematica'> TagBox[&quot;F&quot;, Fibonacci] </annotation> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mtext> </mtext> </mrow> <mroot> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msubsup> <mo> ( </mo> <semantics> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mn> 2 </mn> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;r&quot;, &quot;z&quot;]]], &quot;2&quot;], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msup> <mi> s </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> Fibonacci </ci> <ci> n </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <pi /> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> <apply> <power /> <ci> s </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <ci> n </ci> <apply> <ln /> <ci> r </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["Fibonacci", "[", RowBox[List["n_", ",", RowBox[List["a_", " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], ",", FractionBox[RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "n_"]], ",", FractionBox["1", "2"], ",", "2", ",", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "a_", " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]]]]]], ")"]], RowBox[List["1", "/", "4"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]]], " ", RowBox[List["(", RowBox[List["3", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "n"]]]]], ")"]], " ", SuperscriptBox["r", "z"], " ", SuperscriptBox["s", RowBox[List["2", " ", "z"]]], " ", "n", " ", RowBox[List["Log", "[", "r", "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.