Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself





http://functions.wolfram.com/05.09.06.0002.02









  


  










Input Form





GegenbauerC[n, \[Lambda], z] == ((2^(1 - 2 \[Lambda]) Sqrt[Pi] Gamma[n + 2 \[Lambda]])/ (n! Gamma[\[Lambda]])) HypergeometricPFQRegularized[ {{-n, 2 \[Lambda] + n}, {}, {}}, {{\[Lambda] + 1/2}, {}, {}}, 1/2, -(z/2)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", " ", "\[Lambda]", ",", " ", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", RowBox[List["n", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "n"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["\[Lambda]", "+", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["z", "2"]]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> C </ms> <ms> n </ms> <ms> &#955; </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> SqrtBox </ci> <ms> &#960; </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> <ms> + </ms> <ms> n </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> ! </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <ms> &#955; </ms> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> 0 </ms> <ms> 0 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 0 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> n </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#955; </ms> </list> </apply> <ms> + </ms> <ms> n </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#955; </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </list> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["n", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["\[Lambda]", "+", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox["1", "2"], ",", RowBox[List["-", FractionBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.