Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Series representations > Generalized power series > Expansions at z==-1 > For the function itself





http://functions.wolfram.com/05.09.06.0036.01









  


  










Input Form





GegenbauerC[n, \[Lambda], z] \[Proportional] ((Cos[Pi (n + \[Lambda])] Sec[Pi \[Lambda]] Pochhammer[2 \[Lambda], n])/n!) (1 - ((n (2 \[Lambda] + n))/(2 \[Lambda] + 1)) (z + 1) - ((n (1 - n) (2 \[Lambda] + n) (1 + 2 \[Lambda] + n))/ (2 (2 \[Lambda] + 1) (2 \[Lambda] + 3))) (z + 1)^2 - O[(z + 1)^3]) /; !Element[\[Lambda] + 1/2, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["n", "+", "\[Lambda]"]], ")"]]]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List["\[Pi]", " ", "\[Lambda]"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], ",", "n"]], "]"]]]], RowBox[List["n", "!"]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]]]], RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]]], RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["n", RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", "3"]], ")"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "-", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "3"], "]"]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["\[Lambda]", "+", FractionBox["1", "2"]]], ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> &#955; </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <sec /> <apply> <times /> <pi /> <ci> &#955; </ci> </apply> </apply> <apply> <ci> Subscript </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> n </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <ci> &#955; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["n", "+", "\[Lambda]"]], ")"]]]], "]"]], " ", RowBox[List["Sec", "[", RowBox[List["\[Pi]", " ", "\[Lambda]"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], ",", "n"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "3"]], ")"]]]]], "-", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "+", "1"]], "]"]], "3"]]], ")"]]]], RowBox[List["n", "!"]]], "/;", RowBox[List["!", RowBox[List[RowBox[List["\[Lambda]", "+", FractionBox["1", "2"]]], "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.