Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Series representations > Generalized power series > Expansions at z==infinity > For the function itself > Expansions in 1/(1-z)





http://functions.wolfram.com/05.09.06.0016.02









  


  










Input Form





GegenbauerC[n, \[Lambda], z] == ((2^n Pochhammer[\[Lambda], n])/n!) (z - 1)^n Sum[((Pochhammer[-n, k] Pochhammer[1/2 - n - \[Lambda], k])/ (Pochhammer[1 - 2 n - 2 \[Lambda], k] k!)) (2/(1 - z))^k, {k, 0, n}] /; !Element[2 \[Lambda] + 2 n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["Pochhammer", "[", RowBox[List["\[Lambda]", ",", "n"]], "]"]], " "]], RowBox[List["n", "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "n"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "n", "-", "\[Lambda]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", "z"]]], ")"]], "k"]]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List[RowBox[List["2", "\[Lambda]"]], "+", RowBox[List["2", "n"]]]], ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;\[Lambda]&quot;, &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;-&quot;, &quot;\[Lambda]&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Lambda]&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <ci> Pochhammer </ci> <ci> &#955; </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "n"], " ", RowBox[List["Pochhammer", "[", RowBox[List["\[Lambda]", ",", "n"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "n"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "n", "-", "\[Lambda]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["1", "-", "z"]]], ")"]], "k"]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["n", "!"]]], "/;", RowBox[List["!", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", RowBox[List["2", " ", "n"]]]], "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.