Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Transformations > Products, sums, and powers of the direct function > Products of the direct function





http://functions.wolfram.com/05.09.16.0002.01









  


  










Input Form





GegenbauerC[m, \[Lambda], z] GegenbauerC[n, \[Lambda], z] == Sum[(1 - Mod[m + n + k, 2]) (((k + \[Lambda]) k! ((1/2) (m + n - k + 2 \[Lambda] - 2))! ((1/2) (m - n + k + 2 \[Lambda] - 2))! ((1/2) (-m + n + k + 2 \[Lambda] - 2))! ((1/2) (m + n + k + 4 \[Lambda] - 2))!)/(((1/2) (m + n - k))! ((1/2) (m - n + k))! ((1/2) (-m + n + k))! (\[Lambda] - 1)!^2 ((1/2) (m + n + k) + \[Lambda])! (k + 2 \[Lambda] - 1)!)), {k, Abs[m - n], m + n}] /; Element[GegenbauerC[k, \[Lambda], z] n, Integers] && n >= 0 && Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["m", ",", "\[Lambda]", ",", "z"]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Abs", "[", RowBox[List["m", "-", "n"]], "]"]]]], RowBox[List["m", "+", "n"]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List[RowBox[List["m", "+", "n", "+", "k"]], ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "\[Lambda]"]], ")"]], " ", RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "-", "k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "-", "n", "+", "k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n", "+", "k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "+", "k", "+", RowBox[List["4", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]]]], ")"]], " ", "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "-", "k"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "-", "n", "+", "k"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n", "+", "k"]], ")"]]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "-", "1"]], ")"]], "!"]], "2"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "+", "k"]], ")"]]]], "+", "\[Lambda]"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]], ")"]], "!"]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["k", ",", "\[Lambda]", ",", "z"]], "]"]], "n"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> m </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <plus /> <ci> $CellContext`m </ci> <ci> $CellContext`n </ci> <ci> $CellContext`k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#955; </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> k </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> m </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <abs /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> </uplimit> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <apply> <plus /> <ci> $CellContext`m </ci> <ci> $CellContext`n </ci> <ci> $CellContext`k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <ci> &#955; </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> m </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> m </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> &#955; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> <ci> n </ci> </apply> </apply> <ci> &#955; </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> k </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["m_", ",", "\[Lambda]_", ",", "z_"]], "]"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Abs", "[", RowBox[List["m", "-", "n"]], "]"]]]], RowBox[List["m", "+", "n"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List[RowBox[List["m", "+", "n", "+", "k"]], ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "\[Lambda]"]], ")"]], " ", RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "-", "k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "-", "n", "+", "k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n", "+", "k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "+", "k", "+", RowBox[List["4", " ", "\[Lambda]"]], "-", "2"]], ")"]]]], ")"]], "!"]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "-", "k"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "-", "n", "+", "k"]], ")"]]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n", "+", "k"]], ")"]]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "-", "1"]], ")"]], "!"]], ")"]], "2"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["m", "+", "n", "+", "k"]], ")"]]]], "+", "\[Lambda]"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["2", " ", "\[Lambda]"]], "-", "1"]], ")"]], "!"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["k", ",", "\[Lambda]", ",", "z"]], "]"]], " ", "n"]], "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-03-07





© 1998-2014 Wolfram Research, Inc.