Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Polynomials > GegenbauerC[n,lambda,z] > Representations through equivalent functions > With related functions





http://functions.wolfram.com/05.09.27.0003.01









  


  










Input Form





GegenbauerC[n, \[Lambda], z] == ((Pi 2^(1 - \[Lambda]))/((\[Lambda] + n) Gamma[\[Lambda]])) Sqrt[((\[Lambda] + n) Gamma[2 \[Lambda] + n])/Gamma[n + 1]] (1 - z^2)^((1 - 2 \[Lambda])/4) SphericalHarmonicY[\[Lambda] + n - 1/2, 1/2 - \[Lambda], ArcCos[z], 0]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["n", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List["1", "-", "\[Lambda]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "+", "n"]], ")"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "+", "n"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Lambda]"]]]], "4"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "n", "-", RowBox[List["1", "/", "2"]]]], ",", RowBox[List[RowBox[List["1", "/", "2"]], "-", "\[Lambda]"]], ",", RowBox[List["ArcCos", "[", "z", "]"]], ",", "0"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> nn </mi> <mo> - </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> <mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> n </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> &#955; </ci> <ci> n </ci> </apply> <ci> &#915; </ci> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> &#955; </ci> <ci> n </ci> </apply> <ci> &#915; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <ci> &#915; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> SphericalHarmonicY </ci> <apply> <plus /> <ci> &#955; </ci> <ci> nn </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> <apply> <arccos /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List["1", "-", "\[Lambda]"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "+", "n"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "n"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["n", "+", "1"]], "]"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "n", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]], ",", RowBox[List["ArcCos", "[", "z", "]"]], ",", "0"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "+", "n"]], ")"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.