Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Polynomials > HermiteH[n,z] > Summation > Infinite summation





http://functions.wolfram.com/05.01.23.0017.01









  


  










Input Form





Sum[(Pochhammer[c, Floor[k/2]]/(Floor[k/2]! Pochhammer[1/2, Floor[k/2]])) HermiteH[k, z] w^k, {k, 0, Infinity}] == Hypergeometric1F1[c, 1/2, (4 z^2 w^2)/(1 + 4 w^2)]/(1 + 4 w^2)^c + ((32 c w^3 z^3)/(3 (1 + 4 w^2)^(c + 2))) Hypergeometric1F1[c + 1, 5/2, (4 z^2 w^2)/(1 + 4 w^2)] + ((2 z t (1 + 4 w^2 - 8 c w^2))/ (1 + 4 w^2)^(c + 1)) Hypergeometric1F1[c, 3/2, (4 z^2 w^2)/(1 + 4 w^2)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["Pochhammer", "[", RowBox[List["c", ",", RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]]], "]"]], " "]], RowBox[List[RowBox[List[RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["Floor", "[", FractionBox["k", "2"], "]"]]]], "]"]]]]], RowBox[List["HermiteH", "[", RowBox[List["k", ",", "z"]], "]"]], SuperscriptBox["w", "k"]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]], ")"]], RowBox[List["-", "c"]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["c", ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"]]], RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["(", RowBox[List["32", " ", "c", " ", SuperscriptBox["w", "3"], " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]], ")"]], RowBox[List["c", "+", "2"]]]]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List["c", "+", "1"]], ",", FractionBox["5", "2"], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"]]], RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["(", RowBox[List["2", " ", "z", " ", "t", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["8", " ", "c", " ", SuperscriptBox["w", "2"]]]]], ")"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]], ")"]], RowBox[List["c", "+", "1"]]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["c", ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"]]], RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;c&quot;, &quot;)&quot;]], RowBox[List[&quot;\[LeftFloor]&quot;, FractionBox[&quot;k&quot;, &quot;2&quot;], &quot;\[RightFloor]&quot;]]], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], RowBox[List[&quot;\[LeftFloor]&quot;, FractionBox[&quot;k&quot;, &quot;2&quot;], &quot;\[RightFloor]&quot;]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mi> k </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mi> k </mi> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;c&quot;, Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]], RowBox[List[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;t&quot;, &quot;2&quot;]]], &quot;+&quot;, &quot;1&quot;]]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]], RowBox[List[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]], &quot;+&quot;, &quot;1&quot;]]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;c&quot;, Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]], RowBox[List[RowBox[List[&quot;4&quot;, &quot; &quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]], &quot;+&quot;, &quot;1&quot;]]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> c </ci> <apply> <floor /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <floor /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <floor /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HermiteH </ci> <ci> k </ci> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 32 </cn> <ci> c </ci> <apply> <power /> <ci> w </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <ci> t </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <ci> c </ci> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <ci> c </ci> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["c_", ",", RowBox[List["Floor", "[", FractionBox["k_", "2"], "]"]]]], "]"]], " ", RowBox[List["HermiteH", "[", RowBox[List["k_", ",", "z_"]], "]"]], " ", SuperscriptBox["w_", "k_"]]], RowBox[List[RowBox[List[RowBox[List["Floor", "[", FractionBox["k_", "2"], "]"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["Floor", "[", FractionBox["k_", "2"], "]"]]]], "]"]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]], ")"]], RowBox[List["-", "c"]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["c", ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"]]], RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["32", " ", "c", " ", SuperscriptBox["w", "3"], " ", SuperscriptBox["z", "3"]]], ")"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[RowBox[List["c", "+", "1"]], ",", FractionBox["5", "2"], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"]]], RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]]]]], "]"]]]], RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]], ")"]], RowBox[List["c", "+", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "z", " ", "t", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["8", " ", "c", " ", SuperscriptBox["w", "2"]]]]], ")"]]]], ")"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["c", ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox["w", "2"]]], RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", SuperscriptBox["w", "2"]]]]], ")"]], RowBox[List["c", "+", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.