Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Polynomials > HermiteH[n,z] > Summation > Infinite summation





http://functions.wolfram.com/05.01.23.0012.01









  


  










Input Form





Sum[(HermiteH[k + j n, z] w^(k + j n))/(k + j n)!, {n, 0, Infinity}] == (1/j) Sum[Exp[(-w^2) E^((4 I Pi l)/j) + 2 w z E^((2 I Pi l)/j) - (2 I Pi k l)/j], {l, 1, j}] /; Element[k, Integers] && k >= 0 && Element[j, Integers] && j >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List[RowBox[List["k", "+", RowBox[List["j", " ", "n"]]]], ",", "z"]], "]"]], SuperscriptBox["w", RowBox[List["k", "+", RowBox[List["j", " ", "n"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["j", " ", "n"]]]], ")"]], "!"]]]]], "\[Equal]", RowBox[List[FractionBox["1", "j"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "1"]], "j"], RowBox[List["Exp", "[", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["w", "2"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "l"]], "j"]]]], "+", RowBox[List["2", " ", "w", " ", "z", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "l"]], "j"]]]], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "k", " ", "l"]], "j"]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <mrow> <msub> <mi> H </mi> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> j </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> l </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> l </mi> </mrow> <mi> j </mi> </mfrac> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> l </mi> </mrow> <mi> j </mi> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mi> l </mi> </mrow> <mi> j </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> j </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> HermiteH </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <ci> j </ci> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <ci> j </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <ci> j </ci> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> l </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <exp /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> l </ci> <apply> <power /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> <ci> w </ci> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <pi /> <ci> l </ci> <apply> <power /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <ci> k </ci> <ci> l </ci> <apply> <power /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> k </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> j </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List[RowBox[List["k_", "+", RowBox[List["j_", " ", "n_"]]]], ",", "z_"]], "]"]], " ", SuperscriptBox["w_", RowBox[List["k_", "+", RowBox[List["j_", " ", "n_"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["k_", "+", RowBox[List["j_", " ", "n_"]]]], ")"]], "!"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "1"]], "j"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["w", "2"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "l"]], "j"]]]], "+", RowBox[List["2", " ", "w", " ", "z", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "l"]], "j"]]]], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "k", " ", "l"]], "j"]]]]]], "j"], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List["j", "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.